首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   323篇
  免费   11篇
  国内免费   12篇
化学   34篇
力学   155篇
数学   42篇
物理学   115篇
  2023年   4篇
  2022年   3篇
  2021年   3篇
  2020年   7篇
  2019年   3篇
  2018年   5篇
  2017年   2篇
  2016年   5篇
  2015年   14篇
  2014年   9篇
  2013年   29篇
  2012年   12篇
  2011年   11篇
  2010年   10篇
  2009年   21篇
  2008年   19篇
  2007年   20篇
  2006年   27篇
  2005年   11篇
  2004年   12篇
  2003年   15篇
  2002年   11篇
  2001年   8篇
  2000年   12篇
  1999年   5篇
  1998年   6篇
  1997年   8篇
  1996年   5篇
  1995年   4篇
  1994年   4篇
  1993年   8篇
  1992年   3篇
  1991年   5篇
  1990年   10篇
  1989年   2篇
  1988年   3篇
  1987年   5篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
排序方式: 共有346条查询结果,搜索用时 0 毫秒
31.
A short introduction to geometrical theory of nonlinear differential equations is given to provide a unified overview to the collection 'Symmetries of differential equations and related topics'.  相似文献   
32.
The equations of long nonlinear waves in round jets and channels of arbitrary cross section are considered with account for the transverse acceleration of the fluid particles (Boussinesq approximation). In the general case of steady flows, the equations in the form of shallow water equations with the pressure expressed in terms of the variational derivative of the kinetic energy of a thin transverse fluid layer, have three first integrals with three arbitrary constants. Examples of solutions of the equations for solitary capillary-gravitation waves in rectangular and triangular channels are presented and compared with the higher approximations. The shape of the free boundary of the round jet is determined. In the case of outflow from a conical nozzle an analytical dependence of the jet contraction ratio on the conicity angle is obtained. The dependence is in agreement with the experimental data for angles of less than 45°.  相似文献   
33.
Turbulent mixing takes an important role in chemical engineering, especially when the chemical reaction is fast compared to the mixing time. In this context a detailed knowledge of the flow field, the distribution of turbulent kinetic energy (TKE) and its dissipation rate is important, as these quantities are used for many mixing models. For this reason we conduct a direct numerical simulation (DNS) of a confined impinging jet reactor (CIJR) at Re = 500 and Sc = 1. The data is compared with particle image velocimetry (PIV) measurements and the basic flow features match between simulation and experiment. The DNS data is analysed and it is shown that the flow is dominated by a stable vortex in the main mixing duct. High intensities of turbulent kinetic energy and dissipation are found in the impingement zone which decrease rapidly towards the exit of the CIJR. In the whole CIJR the turbulence is not in equilibrium. The strong mixing in the impingement zone leads to a rapid development of a monomodal PDF. Due to the special properties of the flow field, a bimodal PDF is generated in cross-sections downstream the impingement zone, that slowly relaxes under relaminarising conditions. The time required for meso-mixing is dominating the overall mixing performance.  相似文献   
34.
A computational tool based on the ghost fluid method (GFM) is developed to study supersonic liquid jets involving strong shocks and contact discontinuities with high density ratios. The solver utilizes constrained reinitialization method and is capable of switching between the exact and approximate Riemann solvers to increase the robustness. The numerical methodology is validated through several benchmark test problems; these include one-dimensional multiphase shock tube problem, shock–bubble interaction, air cavity collapse in water, and underwater-explosion. A comparison between our results and numerical and experimental observations indicate that the developed solver performs well investigating these problems. The code is then used to simulate the emergence of a supersonic liquid jet into a quiescent gaseous medium, which is the very first time to be studied by a ghost fluid method. The results of simulations are in good agreement with the experimental investigations. Also some of the famous flow characteristics, like the propagation of pressure-waves from the liquid jet interface and dependence of the Mach cone structure on the inlet Mach number, are reproduced numerically. The numerical simulations conducted here suggest that the ghost fluid method is an affordable and reliable scheme to study complicated interfacial evolutions in complex multiphase systems such as supersonic liquid jets.  相似文献   
35.
Spatial direct numerical simulation (DNS) is used to study the near field dynamics of a buoyant diffusion flame established on a rectangular nozzle with an aspect ratio of 2:1. Combustion is represented by a one-step finite-rate Arrhenius chemistry. Without applying external perturbations at the inflow boundary, large vortical structures develop naturally in the flow field, which interact with the flame and temporally create localized holes within the reaction zone in which no chemical reactions take place. The interaction between density gradients and gravity plays a major role in the vorticity generation of the buoyant plume. At the downstream of the reactive plume, a more disorganized flow regime characterized by small scales has been observed, following the breakdown of the large vortical structures due to three-dimensional (3D) vortex interactions. Analysis of energy spectra shows that the spatially developing reactive plume has a tendency of transition to turbulence under the effects of combustion-induced buoyancy. The buoyancy effects are found to be very important to the formation, development, interaction, and breakdown of vortices in reactive plumes. In contrast with the relaminarization effects of chemical exothermicity via viscous damping and volumetric expansion on non-buoyant jet diffusion flames, the tendency towards transition to turbulence in reactive plumes is greatly enhanced by the buoyancy effects.  相似文献   
36.
数值计算表明,逆向多环形分布射流可造成颗粒能直接进入,并能进行强烈的动量、能量交換的理想的迴流区结构。多环形结构可在大范围內造成所需尺寸的迴流区。逆向射流和主流速度比、环直径、射流直径和孔数、环的结构形式及离燃烧室进口的距离是影响迴流特性的主要参数。  相似文献   
37.
圆湍射流拟序结构研究进展   总被引:4,自引:0,他引:4  
圆湍射流拟序结构的实验研究,经历了流场显示定性观测、热线、激光单点测量、数字图像等方法全流场定量测量以及当前三维演变机制的探讨。与此同时,静态激励和主动技术的拟序结构控制研究也获得了大量的成果。应用涡方法、直接数值模拟和大涡模拟等对圆湍射流拟序结构进行的数值模拟,在印证试验现象的同时,还进一步深入研究了拟序结构的输运特性、激发机制等相关内容。本文对上述进展进行了综述,以期为进一步开展湍射流的研究和应用提供依据。   相似文献   
38.
An acoustic numerical code based on Ligthill's analogy is combined with large-eddy simulations techniques in order to evaluate the noise emitted by subsonic (M=0.7) and supersonic (M=1.4) round jets. We show first that, for centerline Mach number M=0.9 and Reynolds number Re=3.6×103, acoustic intensities compare satisfactorily with experimental data of the literature in terms of levels and directivity. Afterwards, high Reynolds number (Re=3.6×104) free and forced jets at Mach 0.7 and 1.4 are studied. Numerical results show that the jet noise intensity depends on the nature of the upstream mixing layer. Indeed, the subsonic jet is 4 dB quieter than the free jet when acting on this shear layer by superposing inlet varicose and flapping perturbations at preferred and first subharmonic frequency, respectively. The maximal acoustic level of the supersonic jet is, on the other hand, 3 dB lower than the free one with a flapping upstream perturbation at the second subharmonic. The results reported in this paper confirm previous works presented in the literature demonstrating that jet noise may be modified according to the inlet conditions. To cite this article: M. Maidi, C. R. Mecanique 334 (2006).  相似文献   
39.
Regular perturbation expansions are used to analyse the fluid dynamics of unsteady, inviscid, slender, thin, incompressible (constant density), axisymmetric, upward and downward, annular liquid jets subjected to non-homogeneous, conservative body forces when both the annular jets are very thin and the gases enclosed by and surrounding the jet are dynamically passive. Both inertia- and capillarity-dominated annular jets are considered. It is shown that, for inertia-dominated jets, closure of the leading-order equations is achieved at second order in the perturbation parameter, which is the slenderness ratio, whereas closure is achieved at first order for capillarity-dominated jets. The steady leading-order equations are solved numerically by means of both an adaptive finite difference method which maps the curvilinear geometry of the jet onto a unit square and a fourth-order-accurate Runge–Kutta technique. It is shown that the fluid dynamics of steady, annular liquid jets is very sensitive to the Froude and Weber numbers and nozzle exit angle in the presence of non-homogeneous, conservative body forces. For upward jets with inwardly or axially directed velocities at the nozzle exit the effect of the non-homogeneous, conservative body forces is to increase the leading-order axial velocity component, decrease the jet's mean radius and move the stagnation point downstream. For downward jets with radially outward velocity at the nozzle exit the axial velocity component decreases monotonically as the magnitude of the non-homogeneous, conservative body forces is increased.  相似文献   
40.
This paper presents the results of an experimental study on liquid jets discharging from elliptical orifices into still ambient air. The experiments were conducted with a set of elliptical orifices of approximately same area of cross section but varying orifice aspect ratio using water and water–glycerol mixture as experimental fluids. The flow behavior of liquid jets was analyzed using their photographs captured by an imaging system. The measurements obtained for the elliptical liquid jets were compared with the circular liquid jets discharging from a circular orifice of the same area of cross section. Elliptical geometry of the orifice results in a flow process by which the emanating liquid jet periodically switches its major and minor axes as it flows downstream of the orifice. In this paper, we attempt to characterize the axis-switching process through its wavelength and amplitude. For a given elliptical orifice, the axis-switching process is dominantly seen in a particular range of flow conditions. The effects of the orifice aspect ratio and liquid viscosity on the axis-switching process are revealed through this study. The experimental results on jet breakup show that axis-switching process has a destabilizing effect on elliptical liquid jets within a particular range of flow conditions and it results in shorter breakup lengths compared to the circular jet. The extent to which axis-switching destabilizes the jet is dictated by the viscosity of liquid. An increase in orifice aspect ratio destabilizes elliptical liquid jets with low viscosity like water; however, this behavior seems to get obscured in water–glycerol mixture elliptical jets due to high viscosity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号