首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4216篇
  免费   390篇
  国内免费   202篇
化学   516篇
晶体学   8篇
力学   819篇
综合类   40篇
数学   1455篇
物理学   1970篇
  2023年   27篇
  2022年   48篇
  2021年   79篇
  2020年   94篇
  2019年   89篇
  2018年   87篇
  2017年   88篇
  2016年   125篇
  2015年   137篇
  2014年   206篇
  2013年   320篇
  2012年   160篇
  2011年   183篇
  2010年   150篇
  2009年   213篇
  2008年   255篇
  2007年   289篇
  2006年   242篇
  2005年   191篇
  2004年   178篇
  2003年   188篇
  2002年   154篇
  2001年   159篇
  2000年   204篇
  1999年   153篇
  1998年   122篇
  1997年   115篇
  1996年   72篇
  1995年   59篇
  1994年   56篇
  1993年   59篇
  1992年   40篇
  1991年   43篇
  1990年   25篇
  1989年   17篇
  1988年   26篇
  1987年   29篇
  1986年   17篇
  1985年   11篇
  1984年   12篇
  1983年   4篇
  1982年   10篇
  1981年   12篇
  1980年   7篇
  1979年   13篇
  1977年   8篇
  1973年   12篇
  1972年   4篇
  1971年   2篇
  1969年   3篇
排序方式: 共有4808条查询结果,搜索用时 15 毫秒
21.
GIRSANOV’STHEOREMONABSTRACTWIENERSPACESZHANGYINNANAbstractLet(E,H,μ)beanabstractWienerspaceinthesenseofL.Gros.Itisprovedth...  相似文献   
22.
The gedanken experiment of the clock paradox is solved exactly using the general relativistic equations for a static homogeneous gravitational field. We demonstrate that the general and special relativistic clock paradox solutions are identical and in particular that they are identical for finite acceleration. Practical expressions are obtained for proper time and coordinate time by using the destination distance as the key observable parameter. This solution provides a formal demonstration of the identity between the special and general relativistic clock paradox with finite acceleration and where proper time is assumed to be the same in both formalisms. By solving the equations of motion for a freely falling clock in a static homogeneous field elapsed times are calculated for realistic journeys to the stars. 1 Both authors contributed equally to this paper.  相似文献   
23.
Differential scanning calorimetry (DSC) does not allow for easy determination of the glass‐transition temperature (Tg) of the polystyrene (PS) block in styrene–butadiene–styrene (SBS) block copolymers. Modulated DSC (MDSC), which deconvolutes the standard DSC signal into reversing and nonreversing signals, was used to determine the (Tg) of both the polybutadiene (PB) and PS blocks in SBS. The Tg of the PB block was sharp, at ?92 °C, but that for the PS blocks was extremely broad, from ?60 to 125 °C with a maximum at 68 °C because of blending with PB. PS blocks were found only to exist in a mixed PS–PB phase. This concurred with the results from dynamic mechanical analysis. Annealing did not allow for a segregation of the PS blocks into a pure phase, but allowed for the segregation of the mixed phase into two mixed phases, one that was PB‐rich and the other that was PS‐rich. It is concluded that three phases coexist in SBS: PB, PB‐rich, and PS‐rich phases. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 276–279, 2005  相似文献   
24.
We prove a general functional limit theorem for multiparameter fractional Brownian motion. The functional law of the iterated logarithm, functional Lévy’s modulus of continuity and many other results are its particular cases. Applications to approximation theory are discussed.   相似文献   
25.
阵列幅相误差条件下的目标方位估计   总被引:2,自引:0,他引:2       下载免费PDF全文
本文研究了一种改进的MUSIC法,可在一定阵列幅相误差条件下对多目标实现高分辨方位估计,有效地改善了原算法的参数估计性能,具有稳健性高、适用范围广以及工程实现简单等特点,通过大量的计算机仿真和水池实验表明,该方法具有较好的多目标分辨能力和方位估计精度,工程应用前景良好。  相似文献   
26.
Using spatially modulated illumination (SMI) light microscopy it is possible to measure the sizes of fluorescent structures that have an extension far below the conventional optical resolution limit (“subresolution size”). Presently, the sizes are determined as the object extension along the optical axis of the SMI microscope. For this, however, “a priori” assumptions on the fluorochrome distribution (“shape”) within the examined fluorescent structure have to be made. Usually it is assumed that the fluorochrome follows a Gauss-distribution or a spherical distribution. In this report we overcome the necessity to make an assumption on the shape of the fluorochrome distribution. We introduce two new experimentally obtained parameters which allow the determination of a shape measure to describe the spatial distribution of the fluorescent dye. This becomes possible by independent measurements with different excitation wavelengths. As an example, we present shape parameter measurements on individual fluorescent microspheres with a nominal geometrical diameter (“size”) of 190 nm. In the case investigated, the experimental shape correlated well with a homogeneous fluorochrome distribution (“spherical shape”) but not with a variety of other “shapes”.  相似文献   
27.
Let μ+(t) and μ(t) be the locations of the maximum and minimum, respectively, of a standard Brownian motion in the interval [0,t]. We establish a joint integral test for the lower functions of μ+(t) and μ(t), in the sense of Paul Lévy. In particular, it yields the law of the iterated logarithm for max(μ+(t),μ(t)) as a straightforward consequence. Our result is in agreement with well-known theorems of Chung and Erdős [(1952) Trans. Amer. Math. Soc. 72, 179–186.], and Csáki, F?ldes and Révész [(1987) Prob. Theory Relat. Fields 76, 477–497].   相似文献   
28.
Domain wall motion in Mn–Zn and Ni–Zn ferrites with applied magnetic fields is investigated by in situ observations with Lorentz microscopy and electron holography. It is found that both Mn–Zn and Ni–Zn ferrites have a mean grain size of approximately 10 μm and several pores with sizes ranging from 0.2 to 1.1 μm. In situ observations by Lorentz microscopy with an applied magnetic field reveals that in Mn–Zn ferrite, the domain walls move easily across the grain boundary, while in Ni–Zn ferrite, the domain walls move along the grain boundary but are pinned at the grain boundary and pores. From in situ observations of Ni–Zn ferrite by electron holography, it is clarified that domain wall pinning at the grain boundary retards a sensitive increase in magnetic flux parallel to the applied field direction, which is considered to result in high hysteresis loss.  相似文献   
29.
Modulated DSC for gas hydrates analysis   总被引:1,自引:0,他引:1  
Modulated DSC has been applied to the study of methane, ethane and propane hydrates at different hydrate and ice concentrations. The reversing component of the TMDSC curves, makes it possible to characterize such hydrates. Methane and ethane hydrates show the melting-decomposition peak at a temperatures higher than the ice contained in the sample, while propane hydrate melts and decomposes at lower temperature than the ice present in the sample. The hydrate peaks tend to disappear if the hydrate is stored at atmospheric pressure. Guest size and cavity occupation fix the heat of dissociation and stability of the hydrates, as confirmed by parallel tests on tetrahydrofurane hydrates.  相似文献   
30.
The annealing at 373 K of ultrastrong, gel‐spun polyethylene (PE) has been studied. At this temperature, the fibers show no significant shrinkage. Still, a significant decrease in the mechanical properties is observed. The fibers have been analyzed with differential scanning calorimetry (DSC), temperature‐modulated differential scanning calorimetry (TMDSC), atomic force microscopy (AFM), and small‐angle X‐ray scattering (SAXS). During the annealing, the glass transition of the intermediate phase is exceeded, as shown by DSC. When split for structure analysis by AFM, the annealed fibers undergo plastic deformation around the base fibrils instead of brittle fracture. The quasi‐isothermal TMDSC experiments are compared to the minor structural changes seen with SAXS and AFM. The loss of performance of the PE fibers at 373 K is suggested to be caused by the oriented intermediate phase, and not by major changes in the structure or morphology. The overall metastable, semicrystalline structure is shown by TMDSC to posses local regions that can melt reversibly. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 403–417, 2003  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号