首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   6篇
  国内免费   6篇
化学   32篇
力学   38篇
数学   2篇
物理学   11篇
  2023年   1篇
  2022年   3篇
  2021年   3篇
  2020年   11篇
  2019年   3篇
  2017年   2篇
  2016年   2篇
  2015年   8篇
  2014年   8篇
  2013年   3篇
  2012年   1篇
  2011年   6篇
  2010年   4篇
  2009年   4篇
  2008年   3篇
  2007年   4篇
  2006年   1篇
  2005年   2篇
  2004年   5篇
  2003年   2篇
  2002年   1篇
  1999年   2篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1990年   1篇
排序方式: 共有83条查询结果,搜索用时 31 毫秒
71.
72.
A panel forced by a supersonic unsteady flow is numerically investigated using a finite difference method, a Galerkin approach, and proper orthogonal decomposition (POD). The aeroelastic model investigated is based on piston theory for modeling the flow-induced forces, and von Karman plate theory for modeling the panel. Structural non-linearity is considered, and it is due to the non-linear coupling between bending and stretching. Several novel facets of behavior are explored, and key aspects of using a Galerkin method for modeling the dynamics of the panel exhibiting limit cycle oscillations and chaos are investigated. It is shown that multiple limit cycles may co-exist, and they are both symmetric and asymmetric. Furthermore, the level of spatial coherence in the dynamics is estimated by means of POD. Reduced order models for the dynamics are constructed. The sensitivity to initial conditions of the non-linear aeroelastic system in the chaotic regime limits the capability of the reduced order models to identically model the time histories of the system. However, various global characteristics of the dynamics, such as the main attractor governing the dynamics, are accurately predicted by the reduced order models. For the case of limit cycle oscillations and stable buckling, the reduced order models are shown to be accurate and robust to parameter variations.  相似文献   
73.
The past developments on tow-placement technology led to the production of machines capable of controlling fibre tows individually and placing them onto the surface of a laminate with curvilinear topology. Due to the variation of properties along their surface, such structures are termed variable-stiffness composite panels.In previous experimental research tow-steered panels have shown increased buckling load capacity as compared with traditional straight-fibre laminates. Also, numerical analyses by the authors showed that first-ply failure occurs at a significant higher load level. The focus of this paper is to extend those analyses into the postbuckling progressive damage behaviour and final structural failure due to accumulation of fibre and matrix damage. A user-developed continuum damage model implemented in the finite element code ABAQUS® is employed in the simulation of damage initiation and material stiffness degradation.In order to correctly predict the buckling loads of tow-steered panels under compression, it is of crucial importance to take into account the residual thermal stresses resulting from the curing process. Final failure of tow-steered panels in postbuckling is predicted to within 10% difference of the experimental results. Curvilinear-fibre panels have up to 56% higher strength than straight-fibre laminates and damage initiation is also remarkably postponed. Tow-steered designs also show more tolerance to central holes than traditional laminates.  相似文献   
74.
Current and future trends in the aerospace industry leverage on the potential benefits provided by lightweight materials that can be tailored to realize desired mechanical characteristics when loaded. For aircraft design, the deployment of aeroelastic tailoring is hindered by the need to re-compute, for any possible modification of the structure, the dependence of the aerodynamic field on the underlying structural properties. To make progress in this direction, the work presents a rapid computational fluid dynamics based aeroelastic tool which is built around a reduced order model for the aerodynamics that is updated for any modification of the structure by using the structural dynamics reanalysis method. The aeroelastic tailoring tool is demonstrated in transonic flow for the AGARD 445.6 wing, suitably modified with composite materials. It was found that the proposed method provides accurate engineering predictions for the aeroelastic response and stability when the structure is modified from the baseline model.  相似文献   
75.
郑均林  张晔  吴东  孙予罕 《化学学报》2004,62(14):1357-1361,J006
在CTAB模板剂的作用下 ,硅酸钠、铝酸钠和含有MFI纳米簇的沸石前躯体溶液通过S+ I-路线共组装得到了高水热稳定的管状形貌介孔分子筛 .XRD结果显示样品具有类似MCM 41的规则排列六方孔道结构 .在沸水中处理 15 0h后 ,介孔特征仍然保留 ,显示出很好的水热稳定性 .综合SEM和TEM的观察结果 ,此介孔分子筛具有中空的管状形貌 ,平均管长2 .0 μm ,平均直径为 0 .3 0 μm .含有MFI纳米簇的沸石前躯体作为硅源的一部分加入体系中 ,MFI纳米簇伴随来自于硅酸钠的可溶性硅物种共同进入分子筛骨架 ,在提高水热稳定性的同时 ,没有降低六方纳米孔道的规整度 ,也没有对分子筛形貌调变带来不利影响 .MFI纳米簇中 ,硅氧四面体和铝氧四面体的紧密联结方式在进入分子筛骨架时得以保留是水热稳定性提高的主要原因 .作为硅源的另一部分加入的硅酸钠 ,使合成体系pH值足够高 (pH >13 ) ,加入H2 SO4调节体系pH值到10 ,管状形貌的介孔分子筛在逐步中和过程中形成 .通过这种特殊的共组装方法合成介孔分子筛 ,在获得中空的管状形貌的同时显著提高水热稳定性 ,为这种管状形貌介孔分子筛的应用奠定了基础 .  相似文献   
76.
In this paper, the aeroelastic problems of slender vehicles under the influence of random factors and thrust are studied. An aeroelastic dynamic model of a free-free Euler–Bernoulli beam considering thrust and aerodynamic forces is established based on Hamilton’s principle of nonconservative systems. On this basis, considering the influence of random factors, the elastic modulus and viscous drag are regarded as one-dimensional continuous stationary random fields and discretized. The stochastic finite element method is used to solve the dynamic model, and the results are compared with the Monte Carlo simulation results. Then, the influence of the correlation of the random field on the elastic displacement is further analyzed. The following simulation results are obtained: (1) the stochastic factor analysis model established in this paper can reflect the statistical characteristics of aeroelastic response well; (2) the stronger the correlation of the random field is, the greater the expectation of elastic displacement, but as the correlation increases, the expectation tends to be constant; and (3) it is necessary to choose the discrete length of the random field reasonably, and the discrete length depends on the correlation characteristics of the random field studied.  相似文献   
77.
The dynamically-coupled interactions of vortex gusts encountering a symmetric Joukowski airfoil on linear elastic supports is formulated analytically and evaluated numerically using a time-dependent conformal mapping. The Brown and Michael framework models the unsteady shedding of vorticity from the airfoil into the wake, and the aeroelastic motion of the airfoil is analyzed using quasi-steady, apparent mass, and fully-unsteady aerodynamic models. Special attention is paid to the influences of the strength of the incident vortex and the airfoil natural frequency on the initial upstream placement of a vortex gust that achieves direct impingement. These results are weakly sensitive to the initial vortex position in the limits of either large or small structural natural frequency, and the initial vertical vortex position to achieve impingement changes monotonically with the vortex strength. A comparison of the numerical model with available experimental vortex gust measurements over stationary airfoils highlights the appropriate use of the point-vortex model for inviscid vortex–airfoil interaction problems without significant vortex strength decay, which occurs for predominantly viscous interactions of close vortex–airfoil encounters.  相似文献   
78.
Nonlinear dynamic aeroelasticity of composite wings in compressible flows is investigated. To provide a reasonable model for the problem, the composite wing is modeled as a thin walled beam (TWB) with circumferentially asymmetric stiffness layup configuration. The structural model considers nonlinear strain displacement relations and a number of non-classical effects, such as transverse shear and warping inhibition. Geometrically nonlinear terms of up to third order are retained in the formulation. Unsteady aerodynamic loads are calculated according to a compressible model, described by indicial function approximations in the time domain. The aeroelastic system of equations is augmented by the differential equations governing the aerodynamics lag states to derive the final explicit form of the coupled fluid-structure equations of motion. The final nonlinear governing aeroelastic system of equations is solved using the eigenvectors of the linear structural equations of motion to approximate the spatial variation of the corresponding degrees of freedom in the Ritz solution method. Direct time integrations of the nonlinear equations of motion representing the full aeroelastic system are conducted using the well-known Runge–Kutta method. A comprehensive insight is provided over the effect of parameters such as the lamination fiber angle and the sweep angle on the stability margins and the limit cycle oscillation behavior of the system. Integration of the interpolation method employed for the evaluation of compressible indicial functions at any Mach number in the subsonic compressible range to the derivation process of the third order nonlinear aeroelastic system of equations based on TWB theory is done for the first time. Results show that flutter speeds obtained by the incompressible unsteady aerodynamics are not conservative and as the backward sweep angle of the wing is increased, post-flutter aeroelastic response of the wing becomes more well-behaved.  相似文献   
79.
Using ab initio density functional theory calculations, we explore the three most stable structural phases, namely, α,β, and cubic(c) phases, of two-dimensional(2D) antimonene, as well as its isoelectronic counterparts SnTe and InI. We find that the band gap increases monotonically from Sb to SnTe to InI along with an increase in ionicity, independent of the structural phases. The band gaps of this material family cover the entire visible-light energy spectrum, ranging from 0.26 eV to 3.37 eV, rendering them promising candidates for optoelectronic applications. Meanwhile, band-edge positions of these materials are explored and all three types of band alignments can be achieved through properly combining antimonene with its isoelectronic counterparts to form heterostructures. The richness in electronic properties for this isoelectronic material family sheds light on possibilities to tailor the fundamental band gap of antimonene via lateral alloying or forming vertical heterostructures.  相似文献   
80.
21世纪我国生物材料科学展望   总被引:2,自引:0,他引:2  
邹翰 《物理》1997,26(5):264-267
介绍了有关生物材料的基本概念和我国生物材料的发展概况及存在问题,并对21世纪生物材料科学发展的趋势及应优先发展的课题提出了一些看法。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号