首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   114篇
  免费   95篇
  国内免费   1篇
晶体学   1篇
力学   5篇
综合类   3篇
数学   1篇
物理学   200篇
  2024年   5篇
  2023年   5篇
  2022年   3篇
  2021年   4篇
  2020年   3篇
  2019年   6篇
  2018年   1篇
  2017年   9篇
  2016年   13篇
  2015年   7篇
  2014年   22篇
  2013年   11篇
  2012年   14篇
  2011年   7篇
  2010年   16篇
  2009年   8篇
  2008年   6篇
  2007年   9篇
  2006年   13篇
  2005年   13篇
  2004年   13篇
  2003年   6篇
  2001年   4篇
  1999年   9篇
  1998年   2篇
  1996年   1篇
排序方式: 共有210条查询结果,搜索用时 15 毫秒
91.
用改进的化学气相沉积方法和溶液掺杂方法制备了掺Bi双包层石英基光纤. 测试了掺Bi光纤预制棒切片的吸收光谱和掺Bi光纤在特定波长下的吸收系数,在不同波长的激光激发下, 研究了掺Bi光纤的近红外荧光光谱. 掺Bi光纤在976 nm激光激发下,其荧光光谱范围在1000---1400 nm之间, 荧光峰的峰值位于1140 nm附近,半高宽约为130 nm;在793和808 nm激光激发下得到了 1000---1700 nm的超宽带近红外荧光,半高宽超过250 nm.通过对掺Bi光纤预制棒切片进行900 ℃ 保温1 h的热处理后,发现在808 nm激光 激发下预制棒切片的荧光强度增加了近4倍.研究结果表明,具有超宽带荧光特性的双包层掺Bi光纤 有望作为超短脉冲激光器和可调谐激光器的增益介质.  相似文献   
92.
刘鎏  郑建宇  张明江  孟丽娜  张朝霞  王云才 《物理学报》2012,61(8):84204-084204
用光反馈半导体激光器产生混沌超宽带(UWB)信号, 搭建了混沌UWB光载无线通信链路, 实现了360, 720 Mbit/s和1.44 Gbit/s三种不同传输速率下混沌UWB脉冲信号的生成和传输. 在未经任何色散补偿处理的情况下, 1.44 Gbit/s的混沌UWB信号在经过10 km单模光纤和0.6 m无线链路传输后, 在天线接收端被成功解调. 由于混沌UWB信号输出的随机性, 对应的UWB信号频谱中未出现任何离散的谱线. 这意味着利用混沌UWB信号实现的光载无线通信链路, 可以完全避免离散谱线对系统传输性能的劣化.  相似文献   
93.
We show that absorbed and stored electromagnetic energy are proportional to the reflection group delay in highly reflective dispersive dielectric mirrors over the high-reflectivity band.Our theoretical considerations are verified by numerical simulations performed on different dielectric mirror structures.The revealed proportionality between group delay and absorbed energy sets constraint on the application of ultrabroadband and/or dispersive dielectric mirrors in broadband or widely tunable,high-power laser systems.  相似文献   
94.
<正>A novel approach to generate and distribute ultra-wideband(UWB) pulses in optical domain is investigated. In this proposed scheme,a dual-electrode Mach-Zehnder modulator(DE-MZM) is biased at its quadrature point so as to realize the linear response.Then the intensity of output optical field can be assumed to the subtraction of two input Gaussian pulses.If the input Gaussian pulses are with the same sharp parameters but different time delays,a quasi-monocycle-waveform UWB signal can be generated.If the input Gaussian pulses are with different amplitudes and full-width at half-maximum(FWHM),a quasi-doublet-waveform UWB signal can be generated.A transmission of the UWB signals through a 25-km single mode fiber is carried out successfully.The results in both temporal and frequency domains are also presented.  相似文献   
95.
提出并验证了一种基于光学方法产生编码超宽带(UWB)信号的多用户通信系统,在发射端通过光纤直接传输用光学方法生成的UWB信号,在接收端对编码UWB信号进行相关运算,同时完成用户信息和数据信息的判决。系统具有简单扩容、易于接收、远距传输、可调谐性等优点。设计制作的多信道光纤光栅滤波器和色散光纤组合成的鉴频器是系统的核心器件。传输的信号用不同的码片组合来区分各个用户,系统只需调节激光波长来实现用户切换,产生了不同用户的光生编码UWB信号,并恢复出不同用户的信息,实现了多用户通信全过程。  相似文献   
96.
基于等效介质膜理论及多层减反膜原理设计了用于超宽带太赫兹吸收体的三层微结构光栅,光栅基质采用重掺硼硅材料.用有限时域差分法分析了光栅周期、光栅宽度和深度对太赫兹吸收体反射系数的影响.数值分析结果表明,在低于3THz波段,吸收率高于98%的带宽为1.3THz,吸收率高于95%的带宽达2.1THz.用严格耦合波理论对该三层光栅的高吸收现象进行理论分析,分析结果表明,光栅多级衍射的相互作用减少了入射面的反射率,增大了该吸收体的吸收率.进一步优化三层光栅微结构的参量,在0.6~6THz范围内实现了大于95%的太赫兹吸收.基于光栅结构的吸收体结构简单,易于设计与分析,可以应用于太赫兹成像与探测应用领域.  相似文献   
97.
高功率微波(HPM)测量诊断技术是HPM技术研究的一项重要内容。针对HPM测量的现实需求, 研究采用微波光子技术建立测量系统, 阐述了系统测量原理, 并通过仿真对测量系统的性能进行了分析。设计的测量系统采用超宽带、大动态的电光调制器和光电检测器, 利用光纤进行远距离遥控测量, 消除辐射和传导干扰, 最终可达到40 GHz的测量带宽和100 dB/Hz2/3的无杂散动态范围。  相似文献   
98.
高功率微波(HPM)测量诊断技术是HPM技术研究的一项重要内容。针对HPM测量的现实需求,研究采用微波光子技术建立测量系统,阐述了系统测量原理,并通过仿真对测量系统的性能进行了分析。设计的测量系统采用超宽带、大动态的电光调制器和光电检测器,利用光纤进行远距离遥控测量,消除辐射和传导干扰,最终可达到40GHz的测量带宽和100dB/Hz^(2/3)的无杂散动态范围。  相似文献   
99.
针对UWB室内定位精度易受环境影响的问题,在低速、多节点的情况下,提出了一种基于移动节点辅助定位的方法。设置一个增量队列来剔除异常点,然后使用最小二乘法计算得到定位初值。将定位初值代入扩展卡尔曼器滤波算法,得到较为准确的更新后的定位结果。当移动节点处于静止或低速状态时,其解算坐标较为精确,可以将其视作坐标已知的固定节点,来提高其他移动节点的定位精度。实验结果表明,在相同的实验环境下,所提方法的定位均方根误差比最小二乘法和Chan算法分别减小了15.89%和16.45%,最大绝对误差分别减小了60.99%和62.77%。  相似文献   
100.
讨论了由电单极子和磁振子组合而成的复合振子天线结构和工作原理,用时域有限差分方法模拟了天线的辐射特性,计算了天线从同轴线的馈电效率,对于单极脉冲和双极脉冲馈源,馈电效率分别为65%和81%。给出了天线的电压驻波比、辐射近场和远场、能量方向图等。模拟结果表明:在H面内辐射方向图是轴线对称的,其形状是心型;在E面内,方向图关于轴线不对称,辐射最大值方向向上偏离大约15°。这种天线具有宽带特性和较高的馈电效率,适合于超宽带电磁脉冲辐射的天线阵列的应用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号