全文获取类型
收费全文 | 174篇 |
免费 | 31篇 |
国内免费 | 25篇 |
专业分类
化学 | 50篇 |
晶体学 | 3篇 |
力学 | 39篇 |
综合类 | 9篇 |
数学 | 11篇 |
物理学 | 118篇 |
出版年
2024年 | 4篇 |
2023年 | 10篇 |
2022年 | 8篇 |
2021年 | 3篇 |
2020年 | 5篇 |
2019年 | 13篇 |
2018年 | 4篇 |
2017年 | 6篇 |
2016年 | 5篇 |
2015年 | 6篇 |
2014年 | 17篇 |
2013年 | 11篇 |
2012年 | 7篇 |
2011年 | 14篇 |
2010年 | 6篇 |
2009年 | 10篇 |
2008年 | 12篇 |
2007年 | 7篇 |
2006年 | 15篇 |
2005年 | 8篇 |
2004年 | 6篇 |
2003年 | 7篇 |
2002年 | 6篇 |
2001年 | 10篇 |
2000年 | 8篇 |
1999年 | 1篇 |
1998年 | 3篇 |
1997年 | 2篇 |
1996年 | 5篇 |
1995年 | 1篇 |
1994年 | 1篇 |
1993年 | 1篇 |
1992年 | 1篇 |
1991年 | 2篇 |
1990年 | 3篇 |
1989年 | 2篇 |
排序方式: 共有230条查询结果,搜索用时 31 毫秒
201.
202.
应用X射线荧光光谱法测定了海洋沉积物中12种元素(即硫、铝、铁、钙、钾、磷、钛、锰、氯、硅、钠及镁)。样品预先在120℃烘8h后,称取0.500 0g与5.000g混合熔剂(四硼酸锂67g与偏硼酸锂33g混合)置于铂-金坩埚中混匀后,先在600℃预氧化200s,使还原性物质充分氧化,随即升温至1 000℃熔融9min。... 相似文献
203.
高密度、 小体积和高集成的电子元器件散热困难, 易造成过早失效, 采用微通道换热器可以实现小体积内高热流的散热, 但流动阻力很大. 为了保证传热效果, 降低流动阻力, 本文提出了一种新型的微通道结构并对其流动与传热特性进行了数值模拟. 首先研究了微通道形状和结构, 模拟结果表明: 进出口截面宽高比为0.8 的矩形微通道的换热效果最好; 并在此基础上提出一种康托尔分型凹槽结构, 研究了有无康托尔分形以及不同分形级数对流动与传热性能的影响, 综合对比发现: 第二级康托尔分形模型 N2 既能保证热阻显著降低, 又能相比阵列结构降低压降, 具有明显的换热优势; 最后对这种康托尔分形结构的凹槽形状, 尺寸及不同方向上的分形进行研究, 结果表明梯形凹槽的下上表面长度比b/a 为0.6 、 流动方向分形比fx 为1 .25 和通道高度方向分形比fy 为1 .5 时换热流动性能最佳. 相似文献
204.
为了提高微通道热沉的水力性能和热力性能,采用等效比热容法对相变微胶囊悬浮液在固体肋和多孔肋微通道热沉内的流动与传热特性进行研究。结果表明:多孔肋可以使微通道热沉的压降显著降低,对热阻的影响随微通道内冷却剂流动距离变化。相变微胶囊悬浮液相变吸收潜热可以减小微通道热沉的热阻,但是粘度增大使得压降增大。多孔肋和相变微胶囊悬浮液都能提高微通道热沉的综合性能,相变微胶囊悬浮液在多孔肋微通道热沉中比水在固体肋微通道热沉中的综合性能提高了14%。 相似文献
205.
理论模拟了自制的高效冷却器的散热能力,分析了单元封装结构所需材料的导热特性,获得了高功率二极管激光器在高功率密度、高占空比条件下运行的可行性。改进了高密度封装的关键工艺,热沉金属化层达到了3~5 mm,焊料厚度为4~7 mm,封装间距0.6 mm,采用峰值功率1 kW的背冷式叠阵二极管激光器。实验测试结果表明:封装的二极管激光器叠阵单元的整体封装热阻为0.115 ℃/W,有良好的散热能力;该叠阵模块在电流为100 A、占空比15%时,输出峰值功率为986 W,峰值功率密度达到1.5 kW/cm2,平均每个板条的斜效率为1.25 W/A,激光器阈值电流为20 A左右。 相似文献
206.
尼龙6是一种多晶型的半结晶高聚物。实验采用蒸沉法制备出尼龙6,首先通过XRD和FTIR的手段进行表征,与采用沸水处理的尼龙6样品表征结果对比,确定其为γ晶型,然后在130~211℃的温度范围内进行热处理,通过DSC研究其在低于熔点热处理时的整个热行为变化过程,并运用FTIR观察其在不同条件下热处理发生的晶型变化。发现蒸沉法制备的γ晶型尼龙6随着热处理温度的升高,整体结晶完善度以及晶片厚度随着处理温度的升高而增加。而且在这个过程中,样品厚度不同的晶片在不同温度下发生了γ晶型向α晶型的转化,最终在接近熔点(211℃)热处理时,样品变为以α晶型为主。 相似文献
207.
针对矩形肋片热沉, 分别以最大热阻最小化和基于(火积)耗散定义的当量热阻最小化为优化目标, 采用二维传热模型并结合有限元数值仿真对其进行构形优化, 比较了两种目标下的热沉最优构形, 并分析了全局参数(综合了对流换热系数、肋片占据的总面积及其热导率的函数)和材料占比对两种目标(最大热阻、当量热阻)及其对应最优构形的影响. 结果表明: 热沉外形固定时, 两种目标下均不存在最优的肋片厚度; 热沉外形自由变化时, 两种目标下的最优构形存在一定的差异. 此外, 全局参数对两种目标下的最优构形均没有影响, 而材料占比对两种目标下的最优构形均有较大影响. 提高全局参数和材料占比均可以减小最大热阻最小值和当量热阻最小值, 但对两种目标的减小程度不同. 总体上, 调节热沉结构参数使当量热阻最小, 可以同时获得很好的局部极限性能; 而调节热沉结构参数使最大热阻最小, 获得的整体平均散热性能却较差. 因此, 对本文热沉模型进行优化时, 以当量热阻最小化为优化目标更合理. 相似文献
208.
为了更好设计LED液冷换热热沉,提高大功率LED热沉的综合换热性能,模拟计算了三种结构热沉的LED芯片最高结温和器件热阻,运用场协同原理分析了不同LED热沉结构的换热原理,以及努塞尔数和摩擦因子随雷诺数的变化规律;并用强化传热因子来表述换热能力和流动阻力的综合换热效果。结果表明,运用30°角矩形翅片的LED结温和器件热阻最低,换热能力最好;菱形翅片次之,垂直平行翅片最差。30°角矩形翅片和菱形翅片由于倾斜角的存在,在增加换热能力的同时也增加了流动阻力;综合分析换热能力和流动阻力,菱形翅片的综合换热性能最好。 相似文献
209.
210.
针对微通道冷却和冲击射流冷却方式的不足,设计了一种新的带冲击射流的柱肋结构的通道热沉,通过数值模拟的方式研究其流动特性和换热性能,模拟工况为加热热流密度为400W/cm~2,进口总压从3.5~12.5 kPa,出口静压为500 Pa,工质为水,热沉的材料为铜,进口温度为300 K。模拟计算结果表明,该结构具有较高的换热效果和良好的表面温度均匀性,在进口总压为3.5 kPa时,表面的最高温度不超过380 K,加热面最高温度和最低温度的差值约为12 K;而当进口总压为12.5 kPa时,最高温度和温差值分别为368 K和约5 K。在进口总压为3.5~12.5 kPa,所研究结构的热沉的流量为3.03~6.32 g/s。 相似文献