首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   497篇
  免费   227篇
  国内免费   118篇
化学   277篇
晶体学   107篇
力学   2篇
综合类   4篇
数学   1篇
物理学   451篇
  2024年   8篇
  2023年   15篇
  2022年   26篇
  2021年   26篇
  2020年   27篇
  2019年   26篇
  2018年   26篇
  2017年   29篇
  2016年   25篇
  2015年   40篇
  2014年   59篇
  2013年   76篇
  2012年   53篇
  2011年   81篇
  2010年   41篇
  2009年   32篇
  2008年   33篇
  2007年   28篇
  2006年   26篇
  2005年   29篇
  2004年   21篇
  2003年   13篇
  2002年   18篇
  2001年   12篇
  2000年   10篇
  1999年   5篇
  1998年   3篇
  1997年   2篇
  1996年   4篇
  1995年   26篇
  1994年   11篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1988年   4篇
排序方式: 共有842条查询结果,搜索用时 31 毫秒
81.
82.
83.
84.
85.
86.
丁旭  徐琰  郭崇峰 《物理学报》2010,59(9):6632-6636
采用高温固相法合成了近紫外光激发的蓝色荧光粉Sr2B5O9Cl:Eu2+,研究了SrCl2 ·6H2O用量和Eu2+浓度对其结构和发光性能的影响.随着Eu2+浓度的增加,其结构无明显变化,发光强度先增强后减弱,当其浓度为8mol%时,荧光粉的发光强度最大;当用Ca取代Sr时,荧光粉的发射峰从425 nm红移到453 nm. 适当过量 关键词: 氯硼酸盐 蓝色荧光粉 LED  相似文献   
87.
采用凝胶-燃烧法合成了Ca3Sc2Si3O12 ∶Ce绿色LED用荧光粉,用X射线粉末衍射(XRD)、扫描电镜(SEM)、荧光光谱仪等对合成产物进行了分析和表征.结果表明:通过添加H3BO3做助熔剂,制得的荧光粉晶相纯正,颗粒形貌均呈现为较规则的类球形,而且所得荧光粉的粒径均小于1 μm.发射光谱呈现为一宽带,发射主峰位于505 nm,该宽峰对应于Ce3+关键词: 白光LED 荧光粉 3Sc2Si3O12 ∶Ce')" href="#">Ca3Sc2Si3O12 ∶Ce 发光  相似文献   
88.
采用固相反应银作催化剂成功合成出棒状结构的稀土硼酸盐Tb(BO2)3发光材料. 利用X射线衍射和区域电子衍射研究了产物的结构特性,在700 oC煅烧时,Tb(BO2)3纳米棒具有良好晶形. 透射电镜分析表明,Tb(BO2)3纳米棒直径为100~200 nm,厚度为30~50 nm,长约3 μm. 基于Ag纳米颗粒附在Tb(BO2)3纳米棒的顶端和中部的事实,探讨了Tb(BO2)3纳米棒的生长机理. 荧光光谱研究表明,在369 nm紫外光激发下,Tb(BO2)3能发出Tb3+的特征绿色荧光,发射主峰位于546 nm,归属于5D47F5跃迁. 同时,也探讨了煅烧温度对产物的结构、形貌以及发光性质的影响.  相似文献   
89.
用高温固相反应法制备了稀土离子Ce3+、Gd3+双掺杂的YVO4发光材料,通过X射线衍射(XRD)、扫描电镜(SEM)、激发以及发射光谱等测试手段对YVO4:Ce3+(Gd3+)荧光粉的制备条件、发光性能以及表面形貌进行了研究。XRD结果表明,在1100℃恒温5 h可得到Ce3+(Gd3+):YVO4纯相。SEM结果显示颗粒基本为球形,粒径约为300~500 nm。激发光谱测试表明,Ce3+(Gd3+):YVO4荧光粉在近紫外光区(232 nm)和蓝光区(424 nm)可以被有效地激发,用424 nm的蓝光激发样品时,Ce3+(Gd3+):YVO4荧光粉在611 nm和659 nm处的发光强度最大;因此,这种荧光粉可以作为组合型白光LED的红色发射荧光粉的候选材料。  相似文献   
90.
A new long-lasting phosphorescence (LLP) phosphor, Sr2SnO4:Sm3+ which emits reddish-orange LLP upon UV-excitation, is prepared by a conventional high-temperature solid-state method. After irradiation under 247-nm UV light, Sr2SnO4:Sm3+ emits an intense reddish-orange emission afterglow from the 4G5/2 to 6HJ (J = 5/2,7/2,9/2) transitions. The afterglow decay curve of the Sm3+-doped Sr2SnO4 phosphor contains a fast decay component and another slow decay one. Due to the presence of the slow decay component, the afterglow can be seen with the naked eye in the dark clearly for more than 1 h after removal of the excitation source.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号