全文获取类型
收费全文 | 738篇 |
免费 | 38篇 |
国内免费 | 25篇 |
专业分类
化学 | 205篇 |
晶体学 | 4篇 |
力学 | 94篇 |
综合类 | 2篇 |
数学 | 10篇 |
物理学 | 486篇 |
出版年
2024年 | 6篇 |
2023年 | 19篇 |
2022年 | 31篇 |
2021年 | 34篇 |
2020年 | 11篇 |
2019年 | 19篇 |
2018年 | 3篇 |
2017年 | 6篇 |
2016年 | 10篇 |
2015年 | 16篇 |
2014年 | 62篇 |
2013年 | 18篇 |
2012年 | 38篇 |
2011年 | 42篇 |
2010年 | 34篇 |
2009年 | 42篇 |
2008年 | 32篇 |
2007年 | 30篇 |
2006年 | 38篇 |
2005年 | 47篇 |
2004年 | 27篇 |
2003年 | 26篇 |
2002年 | 28篇 |
2001年 | 32篇 |
2000年 | 31篇 |
1999年 | 24篇 |
1998年 | 25篇 |
1997年 | 25篇 |
1996年 | 14篇 |
1995年 | 11篇 |
1994年 | 10篇 |
1993年 | 2篇 |
1992年 | 3篇 |
1991年 | 2篇 |
1990年 | 1篇 |
1989年 | 1篇 |
1988年 | 1篇 |
排序方式: 共有801条查询结果,搜索用时 0 毫秒
1.
2.
3.
采用耦合电场模型的相变格子Boltzmann模型,数值研究了电场作用下锥翅结构表面的饱和池沸腾换热.为了定量分析电场对锥翅结构表面沸腾换热影响的机理,首先在无电场作用下对比调查了平滑表面和锥翅表面的沸腾换热现象.发现锥翅结构在核态沸腾阶段有更多的成核点,沸腾换热性能增强,临界热流密度(critical heat flux,CHF)提高.而在过渡沸腾阶段以及膜态沸腾阶段,由于锥翅结构增加了锥翅表面流体的流动阻力,阻碍了气液交换,换热性能低于平滑表面.基于以上发现,通过对锥翅表面池沸腾过程施加电场,进一步强化了锥翅表面沸腾换热.结果表明,在起始核态沸腾阶段,电场的存在稍微延后了气泡开始成核时间,气泡尺寸减小,沸腾轻微被抑制;充分核态沸腾阶段,由于电场力的作用以及电场与锥翅结构协同表现出的尖端效应,阻止了加热表面干斑的扩散和蔓延,促进沸腾换热;过渡沸腾以及膜态沸腾阶段,尖端效应更加明显,逐渐增大的电场强度使沸腾在更高过热度下处于核态沸腾状态,沸腾换热性能大幅度提高,且CHF逐渐提高. 相似文献
4.
基于单相流体的概念,超临界流体的异常传热行为已经被研究很多年了,但是关于其流动传热机理仍没有统一的认识.本文通过理论分析和实验研究了超临界二氧化碳在竖直管内向上流动过程中,浮升力和流动加速效应对其流动结构和传热过程的影响.结果表明,没有确凿的实验证据表明超临界流体的异常传热行为是浮升力和流动加速直接导致的,存在的估计浮升力和流动加速效应准则均是在常物性流体的基础上,做了大量假设得出的,不同的研究者采用浮升力和流动加速准则分析超临界流体的传热恶化得出的结论不一致.最后,基于拟沸腾理论分析超临界流体的传热恶化过程,提出超临界沸腾数区分了超临界流体正常传热与恶化传热的转换边界,为超临界流体流动传热研究提供新思路,超临界沸腾数对建立用于不同技术的超临界流体动力循环的最佳运行条件具有重要意义. 相似文献
5.
本文采用去离子水和无水乙醇两种工质,利用微通道流动沸腾同步测量实验系统,研究了液膜厚度的瞬态变化规律,实验发现流动沸腾形成的初始液膜厚度在毛细数Ca很宽的范围内都遵循Taylor流动原理;液膜形成后,在蒸发和蒸汽流动携带的耦合作用下,厚度迅速减薄直至蒸干;由于水的汽液黏度比小,速度梯度小,剪切作用带来的液膜厚度减少量小,且水的汽化潜热大,吸收相同热量时蒸发量小,导致水的液膜厚度变化斜率较小,通过理论分析提出了沸腾液膜厚度变化的计算模型,计算结果与实验结果的误差小于20%。 相似文献
6.
纳米颗粒悬浮液池内泡状沸腾的实验研究 总被引:7,自引:0,他引:7
本文对纳米颗粒悬浮液在平壁面上池内沸腾进行了实验研究。实验用的纳米粒子为26 nm的铁粉和13 nm的三氧化二铝纳米粉末,基液为去离子水。分别配成体积浓度为0.1%, 1%和2%的悬浮液。实验结果表明,纳米悬浮颗粒对液体沸腾换热过程的影响会随着纳米颗粒性质,颗粒浓度及热流密度大小的不同而出现不同的效果;加入纳米颗粒后, 对基液沸腾换热的影响存在着两个相反的作用机制,它们分别为:纳米颗粒增强了液体内部的热量迁移能力(热物性的影响)和改变了加热面的表面结构特性(加热面特性的影响)。 相似文献
7.
固体表面上流动膜沸腾与液滴蒸发机理研究的新进展 总被引:1,自引:0,他引:1
当单个液滴落在温度超过某一临界值的炽热固体表面上时,液滴会像弹性球一样跳跃,并伴随着液滴表面蒸发而滴径逐步缩小.这种现象由J.G.Leidenfrost在1756年所发现,是物理学上著名的“球化态”奇异现象,称为Leidenfrost现象.出现此现象的热表面临界温度则称为 Leidenfrost温度(LFT).不同液体在不同压力下和不同表面状况的LPT是不同的.常压下水在一般平整度的钢铁表面上的LFT大约为300℃.液滴大小不同时所呈现的Leidenfrost现象也会有差异.滴径较大的液滴撞击温度超过LFT的热表面时,将克服表面张力的制约而伸展成圆盘状,悬浮在炽热固体… 相似文献
8.
针对电子器件的高效冷却问题,对自然循环回路系统内表面加工有方柱形微结构的硅片上FC-72的强化沸腾换热性能进行了实验研究.测试了两个芯片,其表面上的方柱形微结构的边长均为30μm,但高度分别为60 μm和200 μm.沸腾介质的过冷度设为10 K、25 K和35 K.随着壁面过热度的增加,微结构表面芯片上的热流密度急剧增加且临界热流密度时芯片的表面温度低于芯片回路正常工作的临界上限温度85℃,这与其在池沸腾换热中的特点一样.但临界热流密度值与池沸腾情况相比有所降低. 相似文献
9.
10.