首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   19篇
  国内免费   10篇
化学   19篇
力学   11篇
综合类   10篇
数学   13篇
物理学   52篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   3篇
  2019年   5篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   1篇
  2014年   2篇
  2013年   5篇
  2011年   4篇
  2010年   3篇
  2009年   2篇
  2008年   29篇
  2007年   3篇
  2005年   4篇
  2004年   8篇
  2003年   1篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1999年   5篇
  1998年   3篇
  1995年   3篇
  1994年   3篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1982年   1篇
排序方式: 共有105条查询结果,搜索用时 0 毫秒
101.
介质阻挡放电等离子体流动控制实验研究   总被引:3,自引:0,他引:3  
通过平板实验和压气机叶栅实验研究了介质阻挡放电等离子体所产生的电动力对外流流动和内流流动边界层的加速作用.平板实验中采用LDV测量了介质阻挡放电等离子体在静止流场中诱导出的速度场,并研究了激励电压和频率对诱导速度大小的影响;在不同来流速度情况下,测量了等离子体激励对速度剖面的改变.通过低负荷和高负荷压气机叶栅实验,利用三孔探针研究了等离子体激励对栅后总压、速度以及流动分离的影响.实验中发现,流速低于20 m/s时,加电产生等离子体后,可显著改善栅后总压和速度分布;流速接近50 m/s时,等离子体仍会明显改变总压和速度的最小值;在低速下等离子体激励抑制流动分离是有效的.  相似文献   
102.
本文将注蒸汽燃气轮机(STIG)循环和低温多效热蒸汽压缩(METVC)海水淡化系统结合,构成了STIG-METVC复合系统,分析了系统的热力性能,并讨论了产功、产水子系统界面的情况以进一步揭示系统特点.主要结论包括:(1)与单目标系统相比,此联产系统节能效果显著,尤其是在低压比和低注蒸汽比时.(2)降低压比和注蒸汽比,可提高系统产水量,降低功水比. (3)传统意义上的系统(火用)效率不能合理反映STIG-METVC系统的性能,因此不能作为性能评价指标.(4)余热锅炉是产功、产水子系统的界面,其灿损较大,在各部件中居第二位.提高蒸汽压力有助于减小余热锅炉炯损,但此方法对改善STIG-METVC系统性能效果甚微.  相似文献   
103.
具有压电分流电路薄板的吸声特性Ⅰ.理论分析   总被引:1,自引:0,他引:1  
首次从理论上分析了粘有压电陶瓷片薄板的低频吸声特性和吸声机理.根据压电陶瓷薄片外接分流电路时的等效柔顺性系数,应用拉格朗日方程建立了粘有压电陶瓷片薄板的运动方程.该方程中包含了薄板和压电片的质量、弹性、阻尼以及压电片分流电路的电阻和电感.给出了粘有压电片薄板的表面阻抗和吸声系数的数值计算方法,数值计算表明调节分流电路参数可明显改善薄板一阶模态处的吸声特性.  相似文献   
104.
在HL-2A装置孔栏位形放电的等离子体实验中,电子回旋辅助加热期间观察到了等离子体约束改善的现象,并对等离子体从低约束模式(L模)向约束改善模式转换时的等离子体线平均电子密度、等离子体储能、分界面内辐射功率、能量约束时间、Hα辐射等进行了研究。同时,分析了电子密度和等离子体辐射功率的空间分布随时间的演化。对改善约束的相关功率(辅助加热、欧姆加热功率和损失功率)进行了分析,并研究了等离子体约束改善转换时的边界净输入功率(阈值)与电子线平均密度和环向磁场的关系。  相似文献   
105.
碳纤维原丝的性能好坏在很大程度上决定着碳纤维的最终性能。缺陷少、细旦化、高取向、高纯化等是高性能原丝的基本要求。其中原丝的取向度在很大程度上决定了碳纤维在预氧化、碳化过程中形成的类石墨片层的取向结构,这会影响碳纤维最终的强度和模量,所以制备出高取向的碳纤维原丝具有重大意义。本文聚焦于高取向碳纤维原丝制备工艺,首先分析了高取向原丝的重要性,然后在原丝制备工艺上将纺丝方法以及牵伸工艺对取向度的影响进行总结分析,同时介绍了微积分纳米层叠法和高取向复合纤维原丝的制备工艺,指出优质的初生纤维以及具有稳定化取向排列的原丝是制备高取向碳纤维原丝的关键,以期对提升原丝的取向度进而提升碳纤维性能的研究有所贡献。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号