首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   554篇
  免费   100篇
  国内免费   71篇
化学   60篇
晶体学   1篇
力学   332篇
综合类   14篇
数学   161篇
物理学   157篇
  2024年   10篇
  2023年   23篇
  2022年   28篇
  2021年   28篇
  2020年   27篇
  2019年   31篇
  2018年   23篇
  2017年   19篇
  2016年   21篇
  2015年   22篇
  2014年   53篇
  2013年   31篇
  2012年   38篇
  2011年   25篇
  2010年   42篇
  2009年   22篇
  2008年   23篇
  2007年   21篇
  2006年   14篇
  2005年   30篇
  2004年   6篇
  2003年   18篇
  2002年   15篇
  2001年   22篇
  2000年   14篇
  1999年   13篇
  1998年   27篇
  1997年   11篇
  1996年   16篇
  1995年   9篇
  1994年   13篇
  1993年   9篇
  1992年   9篇
  1991年   5篇
  1990年   1篇
  1989年   3篇
  1988年   3篇
排序方式: 共有725条查询结果,搜索用时 31 毫秒
211.
通过对阵列微孔洞附近应力场的三维有限元数值模拟计算,分析了韧性材料动态失效强度与材料应变率和材料中微孔洞相对间距的数值关系.基于微孔洞聚合模型,通过对微孔洞相对间距与微孔洞附近局部静水拉应力之间数值关系的分析,认为微孔洞之间韧带上静水拉应力对微孔洞相对间距很敏感,从而建立了以微孔洞相对间距和静水拉应力为参数的韧性材料动态失效判据.基于此失效判据,通过数值模拟得到韧性材料在不同应变率下的材料失效强度,并且可以合理解释韧性材料的动态失效.  相似文献   
212.
竞争失效产品定量截尾的简单恒加寿命试验的优化设计   总被引:3,自引:1,他引:2  
本文在指数分布场合下研究了具有竞争失效机理产品的简单恒加试验的优化设计问题,得出了一系列与简单步加试验相对应的结果,这里最优性是指正常应力水平下各失效机理的对数平均寿命的极大似然估计(MLE)的渐进方差之和的极小化。  相似文献   
213.
关于无失效数据的分析   总被引:6,自引:0,他引:6  
本文讨论无失效数据问题,从截断数据模型出发,改进了CLASS-K方法,得到了参数的矩估计,文章还给出了随横模拟的报告。  相似文献   
214.
n-GaN肖特基势垒光敏器件的电子辐照效应   总被引:1,自引:1,他引:0  
刘畅  王鸥  袁菁  钟志亲  龚敏 《光散射学报》2005,17(2):159-163
本文主要研究了n型GaN肖特基紫外光敏器件(包括GaN肖特基势垒紫外探测器,GaN肖特基二极管)的电子辐照效应和失效机理,以及辐照后二极管对不同波长光的光敏特性的变化。从实验中观测到,随着辐照注量的不断增加,GaN光敏器件的击穿电压明显减小,反向漏电流逐渐增大。证实了辐照后Au/GaN间产生的界面态是引起GaN肖特基势垒光敏器件辐照失效的原因。另外,在研究辐照效应对GaN肖特基二管光敏特性的影响时观测到,经过一定剂量的辐照后,GaN肖特基二管能探测到380nm的紫外光和可见光,而在辐照以前,它是探测不到的。这说明辐照效应将导致肖特基势垒光敏器件对较长波长的吸收,使得UV探测器中可见光成分的背景噪声增加。  相似文献   
215.
在综合考虑系统功能函数变量不同属性的基础上 ,建立了单一失效模式下复杂系统模糊随机可靠性的广义模型 ,并讨论了广义模型与各个单一模型之间的关系 ,为产品在复杂状态下的可靠性求解提供了统一的数学模型 .分析讨论表明 :所建立的模糊随机可靠性广义模型更具有一般性 .  相似文献   
216.
航空发动机的高推重比、高效率对热障涂层材料和结构提出了更高要求。利用同步双送粉系统制备了纳米(Gd0.9Yb0.1)2Zr2O7/YSZ双陶瓷层结构和准梯度复合结构的热障涂层,对其在1350~1400℃的火焰热冲击性能与失效机制进行了分析。结果表明:(Gd0.9Yb0.1)2Zr2O7(GY-bZ)热障涂层显示出较好的高温相结构稳定性,其喷涂态与热冲击失效后都是单一的萤石结构;GYbZ/YSZ热障涂层是由纳米未熔颗粒和熔化结晶区组成的“双模式”结构;GYbZ/YSZ双层结构涂层的热冲击寿命为113次,GYbZ/YSZ准梯度结构涂层的热冲击寿命达到370次;双层结构涂层的剥落主要发生在GYbZ内部以及GYbZ与YSZ的层间界面,而准梯度结构涂层的剥落则发生在热生长氧化物(TGOs)附近的YSZ层内。准梯度结构和纳米“双模式”结构相结合是提高热障涂层高温使役性能的有效方法。  相似文献   
217.
随着微电子工艺的发展,小尺寸、高密度及低电压的器件越来越多地应用于航空电子设备。许多科研人员发现高层大气及外太空的带电粒子带来的粒子辐射会对航空电子器件产生严重的影响。基于民用航空局方的要求,鉴于机载设备对单粒子翻转效应的隐患以及航空机载设备国产化的迫切需求,开展FPGA器件用于机载电子设备可能遭遇的单粒子翻转效应的风险问题研究。分析了主流FPGA在航空飞行高度的飞行实验数据,进一步论证其是否满足民用航空的需求。大量数据的分析结果证明,以当下主流FPGA芯片的工艺尺寸、工作电压的条件,单粒子翻转效应是一个不容忽视的问题。即便是航空飞行高度甚至是地面高度,FPGA芯片因单粒子翻转导致失效也是无法满足民用航空设备的安全性要求。  相似文献   
218.
随着信号输入功率的升高,电容式RF MEMS开关会发生自热效应使膜片变形,引起开关气隙高度的改变,导致开关驱动电压漂移,严重影响其可靠性。由于自热效应的失效机理涉及到复杂的多物理场耦合,因此提出了“电磁-热-应力”的多物理场协同仿真方法描述其失效模式,并分析其失效机理。首先利用HF-SS软件建立开关的电磁仿真模型,得到不同输入功率下膜片的耗散功率;再以此作为热源,利用ePhysics软件建立开关的热仿真模型,得到膜片上的温度分布;然后将温度梯度作为载荷,利用ePhysics软件建立开关的应力仿真模型,得到开关的形变行为;最后,根据膜片形变所致的气隙高度变化,得到驱动电压漂移的失效预测模型。以一种具有矩形膜片结构的典型电容式RFMEMS开关为例,利用该方法得到:矩形膜片表面电流密度主要分布在膜片的长边的边缘;温度沿膜片长边逐渐降低,且膜片中心处温度最高、锚点处温度最低;膜片的热应力变形呈马鞍面形,且最大形变点发生在膜片长边的边缘处,仿真还得到0~5 W输入功率下膜片的最大形变量;并拟合出了0~5W输入功率下的开关驱动电压-输入功率漂移曲线,该曲线具有线性特征并与文献实测数据极为吻合,由此证明了该方法的有效性。  相似文献   
219.
骆扬  王亚楠 《物理学报》2016,65(11):110602-110602
对两种物理型硬件木马造成芯片退化或失效的机理进行了详细分析. 通过使用ATLAS 二维器件仿真系统并结合SmartSpice电路逻辑仿真器, 模拟了两种物理型硬件木马对反相器逻辑电路输出特性的影响. 使用ATHENA工艺仿真系统模拟了掺杂离子注入工艺过程, 实现了掺杂型硬件木马的金属-氧化物-半导体场效应管(MOSFET)器件; 使用热载流子注入退化模型对ATLAS 仿真器件进行热载流子压力测试, 以模拟热载流子注入型硬件木马注入MOSFET器件并造成器件退化失效的过程, 分别将上述掺杂型硬件木马和热载流子注入型硬件木马的MOSFET器件与另一个正常MOSFET器件组成同样的反相器逻辑电路. 反相器使用Spice 逻辑电路仿真输出DC直流、AC瞬态传输特性以研究物理型硬件木马对电路输出特性的影响. 为了研究MOSFET器件的物理特性本身对硬件木马的影响, 在不同温度不同宽长比(W/L)下同样对反相器进行Spice电路逻辑输出仿真. 本文分析了离子掺杂工艺、热载流子注入压力测试形成的物理型硬件木马随压力强度、温度的变化对逻辑电路输出特性的影响. 通过结果对比分析得出了含有物理型硬件木马的逻辑电路在DC直流输出特性上的扰动比AC瞬态传输特性更明显的结论. 因此, 本文提出了一种针对物理型硬件木马的检测流程. 同时, 该检测流程是一种具有可操作性的检测物理型硬件木马的方法.  相似文献   
220.
尽管传统的石墨负极在商业化锂离子电池中取得了成功,但其理论容量低(372 mAh·g?1)、本身不含锂的先天缺陷限制了其在下一代高比能量锂电池体系中的应用,特别是在需要锂源的锂-硫和锂-空气电池体系中。金属锂因其极高的理论比容量(3860 mAh·g?1)和低氧化还原电势(相对于标准氢电极为?3.040 V),被认为是下一代锂电池负极材料的最佳选择之一。但是,金属锂负极存在库伦效率低、循环性能差、安全性差等一系列瓶颈问题亟待解决,而循环过程中锂枝晶的生长、巨大的体积变化、以及电极界面不稳定等是导致这些问题的关键因素。本文综述了近年来关于金属锂负极瓶颈问题及其机理,包括金属锂电极表面固态电解质界面膜的形成,锂枝晶的生长行为,以及惰性死锂的形成。同时,本文还介绍了目前用于研究金属锂负极的先进表征技术,这些技术为研究人员深入认识金属锂负极的失效机制提供了重要信息。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号