首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1512篇
  免费   377篇
  国内免费   820篇
化学   1246篇
晶体学   91篇
力学   359篇
综合类   34篇
数学   143篇
物理学   836篇
  2024年   31篇
  2023年   67篇
  2022年   102篇
  2021年   99篇
  2020年   77篇
  2019年   103篇
  2018年   57篇
  2017年   69篇
  2016年   82篇
  2015年   84篇
  2014年   145篇
  2013年   113篇
  2012年   100篇
  2011年   117篇
  2010年   113篇
  2009年   132篇
  2008年   115篇
  2007年   119篇
  2006年   110篇
  2005年   106篇
  2004年   101篇
  2003年   102篇
  2002年   77篇
  2001年   62篇
  2000年   64篇
  1999年   44篇
  1998年   49篇
  1997年   54篇
  1996年   34篇
  1995年   38篇
  1994年   51篇
  1993年   29篇
  1992年   21篇
  1991年   9篇
  1990年   11篇
  1989年   7篇
  1988年   4篇
  1987年   5篇
  1986年   2篇
  1985年   2篇
  1982年   2篇
排序方式: 共有2709条查询结果,搜索用时 31 毫秒
131.
锂硫电池因其较高的理论容量和对环境友好等优势被视为极具发展潜力的储能装置,但是多硫化物的穿梭效应极大地限制了锂硫电池的实际应用。本文以葡萄糖为碳源,离子液体为氮源和硫源,KCl和ZnCl2为模板剂,KOH为活化剂,通过热解工艺合成了氮硫共掺杂多孔碳(NSPC)。XPS和极性吸附实验表明N、S杂原子成功引入并且提高了碳材料对多硫化物的吸附能力,有效缓解多硫化物的穿梭效应,而较高的比表面积(1290.67 m2·g-1)有助于提高硫负载量。负载70.1wt.%的硫后(S@NSPC)作为锂硫电池的正极材料表现出了良好的电化学性能。在167.5 mA·g-1的电流密度下S@NSPC的首次放电容量为1229.2 mAh·g-1,远高于S@PC的861.6 mAh·g-1,且S@NSPC循环500圈后容量为328.1 mAh·g-1。当电流密度从3350 mA·g-1恢复至167.5 mA·g-1时,可逆容量达到首圈放电比容量的80%,几乎恢复至其初始值。  相似文献   
132.
不含金属的碳材料通过廉价且易获得的柚子皮经KOH活化和高温热解获得,该碳材料具有高比表面积(1 055 m~2·g~(-1))和高石墨化程度的类蜂窝状结构。将多孔碳(PAC)材料修饰后的电极作为工作电极,采用阳极溶出伏安法(SWASV)同步检测Cd~(2+)、Pb~(2+)和Cu~(2+)离子,表现出较高的灵敏度、可重复性、稳定性和较低的检测限。研究认为PAC的微孔和中孔可以充当有效的离子传递通道,从而加速离子的扩散并显著提高交换效率,而高的石墨化程度提高了材料的导电性,加速了电子传输。  相似文献   
133.
采用水热合成法,在Ti网上原位生长多孔层状Co_3O_4纳米片,并优化了电荷转移电阻。通过X射线衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对产物的结构、形貌进行表征,及对电极的电化学性能进行测试。结果表明,材料是由排列良好的微米矩形二维薄片组成,且具有均匀的孔隙分布。这种独特的微纳米结构的超级电容器电极材料降低了电极的电荷转移电阻,增强了活性物质的结构稳定性,从而提高了电极的电化学性能,在电流密度为100 mA·g-1时,电极循环1 000次后,电容保持率为91.8%,电荷转移电阻(Rct)为0.29Ω。这些显著的超电容性能归因于合理的二维层状结构在柔性基底钛网上的生长及柔性Co_3O_4/Ti电极活性材料的高利用率。  相似文献   
134.
Mo对脱合金制备的Ni-Mo电极骨架结构与析氢性能的影响   总被引:1,自引:0,他引:1  
采用快速凝固结合脱合金化方法制备了不同Mo含量的纳米多孔Ni-Mo合金,通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和N2吸附-脱附分析等对多孔合金的物相、形貌结构及孔径分布进行了表征,并通过线性扫描伏安、Tafel斜率、交流阻抗和循环伏安等方法测试了多孔合金电极的电催化析氢性能.结果显示,多孔合金电极材料在50 mA/cm2电流密度下析氢过电位随着Mo含量的增加先降低后升高,Ni2.5Mo2.5合金析氢活性最强,过电位为218 mV,析氢过程由Volmer-Heyrovsky步骤控制,交换电流密度为0.29 mA/cm2,经1000周循环后的极化曲线基本保持原状,50 mA/cm2电流密度下过电位增加3.67%,表现出优良的析氢稳定性.  相似文献   
135.
采用室温离子热法合成了一种氟取代的具有五重贯穿金刚石拓扑结构的三维共价有机骨架材料(COFs), 记为JUC-515. 与高温溶剂热法不同的是, 室温离子液体法具有反应温度和压力低、 反应时间短、 操作简单、 无需催化剂和不产生有机蒸汽污染等优势. 制备的材料具有高度结晶性、 较大的孔隙率和良好的CO2选择性吸附性能.  相似文献   
136.
将镍铁金属配位聚合物前驱体在惰性气氛下热分解制备了富氮洋葱碳(ONC)包覆的Ni/Ni Fe_2O_4多孔纳米棒复合析氧电催化剂,与Ni@ONC,Ni Fe_2O_4材料及传统Ru O_2催化剂相比,得益于这种富氮洋葱碳包覆的Ni/Ni Fe_2O_4一维多孔纳米异质结构,Ni/Ni Fe_2O_4@ONC材料拥有更优异的导电性能和更大的电化学活性面积(0.149 m F),因而表现出更优异的析氧电催化性能。Ni/Ni Fe_2O_4@ONC纳米棒在1 mol·L~(-1) KOH溶液中,10 m A·cm-2下的析氧过电位仅为299 m V,塔菲尔斜率为73 m V·dec-1,展现出优异的析氧稳定性能。  相似文献   
137.
生物质作为自然界唯一可再生的有机碳资源,其利用受到了越来越多的关注。特别是随着能源和环境危机的日益加重,将生物质中非可食用部分催化转化为燃料及具有高附加值的化学品被认为是高效、环保、原子经济的绿色过程。同时,多孔炭材料具有丰富的孔道结构、优异的水热稳定性和大比表面积,是生物质催化转化反应中最常用的载体材料之一。兼之炭材料表面极性、亲疏水性的可调变性,及对酸碱溶剂的反应惰性,也使其无论在学术研究还是在工业应用中都具有特殊的优势。另外,随着纳米炭材料科学的飞速发展,合成孔径、形貌、及表面官能团可控的介孔炭和具有多级孔道结构的多孔炭材料成为可能,将其应用到纤维素催化转化过程中,对深入理解孔道结构、表面官能团对纤维素转化的作用,揭示催化反应作用机制,指导炭基催化剂的设计合成,均具有重要意义。在本综述中,我们首先对纤维素转化中多孔炭的孔道结构和表面官能团性质的独特作用进行了阐述。由于商业活性炭的孔径一般在微孔尺度,但纤维素及可溶低聚糖的分子体积较大,因而其在活性炭中的传质受到了极大的限制。通过模板法获得的介孔炭材料,可实现孔径在2–10 nm的可控合成,大大提高了反应物的扩散速率,使之能与催化活性位有效接触。但孔道过于狭长,在反应过程中堵塞的可能性增高,进而导致催化剂失活;因此,在介孔孔道的基础上,建立互通的多级孔道结构对反应物、中间物、和产物的扩散,及催化活性的保持更为有利。另一方面,炭材料表面的含氧官能团不仅具有加强1,4-糖苷键吸附的作用,还可以作为酸性活性中心催化水解反应的进行;尤其是在传统的水相纤维素催化转化过程中,亲水表面对多孔炭催化剂与反应物的接触非常有利。本文以纤维素水解及纤维素水解加氢反应为例,展开讨论了多孔炭作为固体酸及双功能催化剂载体的应用。在水解反应中,纤维素首先在热水中降解为可溶低聚糖,之后再与活性炭表面官能团反应;其中多孔炭的比表面积、酸量、及酸强度均是促进水解发生的正向因素。在水解加氢反应中,炭载贵金属催化剂作为最常用的加氢催化剂,可获得以六元醇为主的纤维素转化产物。除了加氢作用之外,贵金属小颗粒被证实可以通过氢溢流作用提供水解所需的H+,同时,正价的贵金属也可促进反应过程中的氢转移。另一方面,由于钨物种可催化逆羟醛缩合反应的发生,因此在反应体系中引入钨物种时,水解加氢的主要产物由六元醇变为乙二醇。需要特别指出的是,在纤维素催化水解加氢的过程中,多孔炭材料作为载体同样具有非常重要的作用:一方面,三维介孔的孔道结构不仅有利于反应物、产物的扩散,也有利于加氢金属催化剂的分散,进而提高金属的催化加氢能力;另一方面,当炭材料的表面化学性质改变时,也会影响产物的选择性分布,例如当炭表面显碱性时,由于异构化作用,丙二醇成为主要产物。本文最后,我们列举了一些新型多孔炭材料,包括杂原子改性的多孔炭材料和金属氧化物-炭复合多孔材料的合成方法及其在纤维素催化转化乃至生物质转化中的潜在应用。  相似文献   
138.
制备了多孔碳固载离子液体纳米材料修饰玻碳电极(GCE),用于抗氧化剂叔丁基对苯二酚(TBHQ)的检测研究。不同电极上的交流阻抗结果表明,经过多孔碳固载离子液体修饰后的玻碳电极阻抗显著减小。多孔碳固载离子液体修饰后电极的氧化峰电流为41.93μA,比修饰前增大约5.5倍,说明多孔碳固载离子液体可显著提高电极的导电性,促进电极表面的电子转移,提高检测灵敏度。用时间~电流曲线测得TBHQ的线性范围为1.00~120.00μg/mL,检出限为0.16μg/mL。  相似文献   
139.
以废弃柑橘皮渣为碳源,通过ZnCl2活化后高温煅烧制备了纳米多孔碳材料(NPC),将其作为吸附剂,建立了分散固相萃取净化、气相色谱法测定果蔬中有机磷农药残留的方法.扫描电子显微镜(SEM)、X射线衍射(XRD)、傅立叶红外光谱(FT-IR)、拉曼光谱及氮气吸附分析(BET)等表征显示,NPC是无定形的多孔碳材料,孔径大小为0~15 nm,比表面积和孔体积分别为1243 m2/g和1.28 cm3/g.以果蔬中14种有机磷类农药为分析对象,考察了吸附剂的用量和净化时间,并将NPC与商业化材料N-丙基乙二胺(PSA)、十八烷基硅胶键合相(C18)和石墨化碳黑(GCB)进行了对比.结果表明,NPC最佳使用量为0.01 g,净化时间只需2 min.NPC成本远低于C18、PSA和GCB,因具有丰富的孔道结构,NPC净化效果显著优于3种商业化材料.在最优条件下,14种有机磷农药在0.02~1.0 mg/L范围内的线性关系良好(R2>0.99),检出限(S/N=3)为0.63~5.30μg/kg.3个添加水平下的平均回收率为71.3%~114.7%,相对标准偏差(RSD)为0.9%~12.9%.本方法操作简便、快速、成本低,在果蔬样品前处理中具有广阔的应用前景.  相似文献   
140.
多孔碳材料由于高的比表面积、优异的电子传导率、良好的化学稳定性等优点在超级电容器电极材料领域被广泛研究。 碳材料的组成及表面孔结构直接影响其电化学性能,为进一步提高碳材料的电容性能,本文首次以聚多巴胺球为前体,KOH为活化剂,通过高温碳化成功制备了良好电化学性能的氮掺杂多孔碳材料。 通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、 X射线粉末衍射(XRD)、傅里叶变换红外光谱(FT-IR)、X射线光电子能谱(XPS)和Raman光谱等对所制备的氮掺杂多孔碳材料进行了形貌及结构组成的表征。 在6 mol/L KOH电解液中, 采用循环伏安、恒电流充放电对多孔碳材料的电化学性能进行了研究。 结果表明,由于双电层电容和赝电容的协同作用,在电流密度为1 A/g时,材料的比电容可达269 F/g,充放电循环1000圈后电容仍可保留初始值的93.5%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号