首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2188篇
  免费   264篇
  国内免费   151篇
化学   81篇
晶体学   2篇
力学   1864篇
综合类   13篇
数学   69篇
物理学   574篇
  2024年   14篇
  2023年   59篇
  2022年   69篇
  2021年   69篇
  2020年   68篇
  2019年   87篇
  2018年   51篇
  2017年   61篇
  2016年   114篇
  2015年   129篇
  2014年   133篇
  2013年   111篇
  2012年   134篇
  2011年   142篇
  2010年   135篇
  2009年   142篇
  2008年   132篇
  2007年   116篇
  2006年   123篇
  2005年   114篇
  2004年   123篇
  2003年   111篇
  2002年   46篇
  2001年   36篇
  2000年   38篇
  1999年   20篇
  1998年   31篇
  1997年   26篇
  1996年   26篇
  1995年   20篇
  1994年   23篇
  1993年   24篇
  1992年   8篇
  1991年   17篇
  1990年   14篇
  1989年   21篇
  1988年   13篇
  1987年   3篇
排序方式: 共有2603条查询结果,搜索用时 31 毫秒
31.
炸药燃烧的高温高压气体产物可以进入基体裂纹中引发炸药表面热传导燃烧,形成所谓的对流燃烧。在一定约束条件下,不断上升的气体压力反过来又使炸药基体产生更多的裂纹,为对流燃烧提供更多的通道和燃烧表面积,快速生成大量产物气体导致高烈度反应现象的产生。本文中设计了一种新型强约束球形装药中心点火实验,针对一种HMX为基的PBX炸药,对高烈度反应条件下燃烧裂纹传播和反应增长过程进行了观测,实验中采用测得的反应压力和壳体速度历程对反应烈度进行了量化表征。在带窗口结构中,早期炸药中的燃烧裂纹不可见;中期燃烧裂纹扩展到药球表面时,先形成4条沿经线方向近似对称的主裂纹,随后环向贯通并扩展到整个药球表面;最后的剧烈反应造成强烈发光。上述反应演化经历低压增长阶段约为100 μs,之后伴随着壳体变形膨胀产生剧烈的反应,此时产物压力在约10 μs时间内超过1 GPa,并形成约20%相对于裸炸药爆轰的超压输出。在全钢结构中,20 mm厚的壳体膨胀速度最大可达到500 m/s,此时壳体完全破裂。  相似文献   
32.
基于火焰不稳定和爆炸超压的耦合机制,通过向光滑火焰模型中引入褶皱因子,建立了褶皱火焰模型和湍流火焰模型,对密闭燃烧室内爆炸超压进行理论预测,且对比了绝热压缩和等温压缩对爆炸超压预测的影响规律。结果表明:在增强的流体动力学不稳定作用下,膨胀火焰失稳加剧,且在定容燃烧阶段形成胞状火焰;光滑火焰模型忽略了火焰不稳定,爆炸超压理论预测值比实验值偏低,且等温压缩下超压预测值低于绝热压缩下的预测值;湍流火焰模型高估了火焰褶皱程度,超压预测值远高于实验值;褶皱火焰模型可成功预测丙烷/空气爆炸压力和燃烧室体积V=25.6 m3的甲烷/空气爆炸压力;对于甲烷/空气爆炸,燃烧室体积V≤1.25 m3时,实验压力值介于褶皱火焰模型和绝热光滑火焰模型预测值之间。  相似文献   
33.
为避免密闭空间内可燃预混气体爆炸事故造成的伤害,对其进行较为准确的爆炸超压预测是抗爆设计和日常安全管理的关键。结合已有文献实验数据,利用光滑层流火焰传播理论模型建立了爆炸超压模型;对比发现,当体积较大时,光滑层流火焰传播理论模型存在较大的误差。较大体积密闭空间爆炸火焰传播过程中的不稳定性造成火焰前锋面褶皱并引起湍流燃烧,导致火焰前锋面表面积大幅增加,且在火焰传播过程中表现出自相似分形特征。依据褶皱及湍流火焰传播过程中的自相似分形特征,基于分形燃烧理论和相关经验数据,进一步建立了考虑可燃预混气体爆炸火焰褶皱及湍流火焰传播的爆炸超压预测模型,并与实验所得结果进行了对比。结果表明:当密闭空间体积较大时,利用褶皱及湍流火焰传播理论建立的爆炸超压模型进行峰值压力估算时,两种工况下实验所得和理论计算所得相对误差分别为10.4%和11.1%,较光滑层流火焰传播理论爆炸超压模型相比,误差分别减少了72.3%和50.6%。本文所建立理论模型与实验所得结果具有较好的一致性,在一定程度上可满足结构抗爆设计或日常安全管理的需要。  相似文献   
34.
为了深入研究车辆底部防护组件爆炸冲击下的结构响应,提高防护型车辆的抗爆炸冲击性能,建立了某车辆底部防护组件在爆炸冲击下的有限元模型,并进行爆炸冲击台架试验验证了有限元模拟的可靠性;将内凹六边形负泊松比蜂窝材料作为防护组件的夹芯部分,分析负泊松比蜂窝材料在爆炸冲击下的变形模式,并对比了同等质量的其他3种防护组件的抗爆炸冲击性能。结果表明,含有负泊松比蜂窝夹芯的防护组件具有更优的抗爆性能。建立了以内凹六边形负泊松比蜂窝胞元尺寸参数为设计变量的多目标优化问题的数学模型,采用多目标遗传算法获得胞元几何参数的最优方案,有效降低了防护组件基板的最大挠度和最大动能。  相似文献   
35.
为提高承受内部爆炸载荷钢筒的抗爆性能,研究了泡沫铝内衬对钢筒变形的影响。首先通过对比实验,发现在本文的实验条件下,泡沫铝内衬导致钢筒变形增大,甚至发生了严重的破坏;进而建立有限元模型,研究了钢筒变形随爆炸当量、泡沫铝内衬厚度的变化机理和规律。结果表明,添加足够厚度的泡沫铝内衬能够减小钢筒变形,但泡沫铝厚度不足时,则可能起到相反的效果。对于固定尺寸的含泡沫铝内衬钢筒,随着爆炸当量增加,泡沫铝内衬对钢筒塑性变形的影响主要包含3种模式。模式1,泡沫铝可通过塑性变形吸收爆炸载荷,从而减小钢筒变形。模式2,泡沫铝内衬导致钢筒承受的载荷强度增大,钢筒塑性变形增大。模式3,泡沫铝对载荷强度的影响可忽略,泡沫铝通过增大结构质量减小钢筒塑性变形。  相似文献   
36.
为得到接触爆炸下钢筋混凝土(reinforced concrete,RC)梁的局部破坏模式和毁伤效应,对同一尺寸的RC梁进行了不同装药量的接触爆炸试验研究。试验中采用框架结构中典型工程尺度RC原型梁为研究对象,通过4次爆炸试验,观测了RC梁在不同装药量下的局部破坏模式和破坏特征,分析了装药量对局部毁伤效应的影响。研究结果表明:接触爆炸荷载作用下,RC梁将发生正面成坑、侧面崩落、背面震塌和截面冲切等局部破坏模式,爆坑深度、震塌厚度、表面毁伤面积以及受压区纵筋变形均与装药量立方根近似呈线性增加关系。在试验数据基础上,将RC梁局部毁伤程度划分为轻度毁伤、中度毁伤、重度毁伤和严重毁伤4个等级,采用比例装药量判据进行评估。研究成果可为抗爆结构设计和结构毁伤评估提供理论依据。  相似文献   
37.
为了研究内爆炸薄圆板的失效与作用载荷特性,在双圆筒装置内开展了铝质、钢质薄圆板内爆炸实验,分析了圆板破坏模式及比冲量载荷特性,并基于相同变形下载荷相等原理,得到了钢质圆板极限变形下的有效比冲量及作用时间,提出了该工况下圆板变形的预估模型。结果表明:在内爆炸载荷作用下,薄圆板的夹持边界和几何中心是应力集中区,产生了塑性大变形、拉伸撕裂、剪切断裂3种破坏模式;圆板的比冲量载荷由初始的波浪式增长逐渐转化为线性增长,30~80 g某温压装药使1 mm厚钢质圆板产生极限变形的有效比冲量作用时间在2.26~2.93 ms之间,经验证,圆钢板变形预估模型得到的装药质量与实验装药质量偏差小于13.3%。  相似文献   
38.
簇发振荡普遍存在.探索通向簇发振荡的可能路径是簇发研究的热点问题之一."脉冲式爆炸(pulsed-shaped explosion,PSE)"是一种最近被报道的可以诱发簇发振荡的新机制,其特征为平衡点和极限环表现出了与参数变化相关的脉冲式急剧量变.PSE会导致系统轨线急剧跃迁,从而诱发典型的簇发振荡.然而,目前报道的PSE中仅含有"单向的尖峰",未发现"双向的尖峰",且由其诱发的簇发振荡仅含单向的振荡簇.本文以多频激励Rayleigh系统为例,旨在揭示PSE的不同表现形式以及与此相关的簇发动力学.利用频率转换快慢分析法得到了Rayleigh系统的快子系统和慢变量.针对快子系统的分析表明,PSE表现出了较为复杂的动力学特性,其特征是PSE包含了正负双向两个不同的尖峰,此即所谓的正负双向PSE.其急剧量变行为,导致了系统轨线在单个振荡周期内出现正向和负向的多次跃迁,由此得到了由正负双向PSE所诱发的簇发振荡.根据吸引子类型分别揭示了点--点型和环--环型两类簇发振荡模式的产生机制.本文的研究给出了PSE的不同表现形式,丰富了多时间尺度下的簇发振荡的诱发机制.   相似文献   
39.
以正戊烷云雾为研究对象,进行预点火湍流对云雾爆炸参数影响规律的实验研究。首先通过不同气动压力进行喷雾,获得平均特征直径(SMD)分别为 21.21、14.51 和 8.64 μm 的正戊烷云雾,并得到不同气动压力预点火的湍流均方根速度;随后在 20 L 云雾爆炸参数测量系统中实验获得预点火湍流对正戊烷云雾蒸发速率、爆炸超压峰值、压力上升速率和火焰传播延迟时间的影响。结果表明:(1) 对于圆柱形罐体对称式双喷头分散系统,流场环境可近似认定为零平均速率湍流场;在0.4、0.6和0.8 MPa的气动压力喷雾50 ms的分散作用下,在100~250 ms内,湍流均方根速度在1.0~6.2 m/s范围内,平均湍流积分尺度在40~72 mm范围内,湍流最大湍流尺度的雷诺数在8 000~15 000范围内,柯尔莫哥洛夫微尺度在0.03~0.1 mm范围内;(2) 对于较小的液滴群,随湍流强度的增加,液滴群的蒸发速率有更为明显的提升;(3) 对比云雾三种SMD,粒径8.64 μm的超压峰值与最大压力上升速率随湍流强度增长趋势更显著,并发生爆炸强度显著提升现象,即存在“转变区域”(transition range)现象;(4) 对于SMD在8~22 μm范围内,湍流均方根速度处于1.0~4.0 m/s时为火焰传播延迟时间的低增长阶段,湍流均方根速度处于4.0~6.2 m/s时为火焰传播延迟时间的高增长阶段,湍流强度与火焰传播延迟时间在相应的两个湍流强度阶段范围内呈线性增长。  相似文献   
40.
为研究多孔吸能材料泡沫铝板对工程结构的抗爆防护作用,开展室外爆炸破坏实验,分别对设置不同泡沫铝防护层的钢筋混凝土(reinforced concrete,RC)板在爆炸荷载下的动态响应及破坏模式进行了研究,并运用LS-DYNA软件建立了有限元模型。通过与实验对照,验证了模型的可行性,对比分析了有、无泡沫铝防护层钢筋混凝土板的损伤破坏规律,并讨论了泡沫铝密度梯度分布和纵筋配筋率的影响。结果表明:有限元模型能够有效分析含泡沫铝防护层RC板的动态响应及其破坏形态;泡沫铝防护层能够有效减小钢筋混凝土板的挠度变形,降低试件的破坏程度;泡沫铝密度由下到上递增情况对RC板的减爆效果最好;增大配筋率可以提升泡沫铝防护RC板整体抗爆性能。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号