首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   392篇
  免费   72篇
  国内免费   43篇
化学   28篇
晶体学   1篇
力学   141篇
综合类   5篇
数学   19篇
物理学   313篇
  2024年   3篇
  2023年   12篇
  2022年   18篇
  2021年   18篇
  2020年   17篇
  2019年   17篇
  2018年   12篇
  2017年   11篇
  2016年   20篇
  2015年   22篇
  2014年   34篇
  2013年   11篇
  2012年   18篇
  2011年   25篇
  2010年   21篇
  2009年   31篇
  2008年   31篇
  2007年   26篇
  2006年   25篇
  2005年   14篇
  2004年   16篇
  2003年   18篇
  2002年   14篇
  2001年   13篇
  2000年   12篇
  1999年   8篇
  1998年   2篇
  1997年   7篇
  1996年   5篇
  1995年   4篇
  1994年   4篇
  1993年   4篇
  1992年   3篇
  1991年   4篇
  1990年   4篇
  1989年   3篇
排序方式: 共有507条查询结果,搜索用时 15 毫秒
251.
傅强 《应用声学》2014,22(8):2428-2430
针对涡轴发动机起动过程复杂的特点,提出了“跟踪-微分器”的二阶动态结构来对其加速过程进行控制;首先,在对涡轴发动机起动过程分析的基础上,给出了其起动控制逻辑;其次,通过对起动过程主燃油供油系统规律分析,给出了起动过程的供油计划,并采用“跟踪-微分器”的二阶动态结构来求取转速加速度;最后,对所研究的涡轴发动机起动过程控制规律进行了仿真验证;仿真结果表明,所设计的过程控制方法满足起动时限的要求,且不超温超转,达到了系统设计要求。  相似文献   
252.
2021-09期目录     
对连续爆轰发动机中常见的低频爆轰不稳定性现象开展了基于含源项Euler方程的二维数值模拟研究,揭示了低频爆轰不稳定性产生的机理和详细过程。结果表明,燃烧室头部持续存在一些反传激波,这些激波与进气壁面相互作用会产生“进气阻滞点”,导致新鲜气体层不规则分布;不规则新鲜气体层会使爆轰波头上的压强分布随进气阻滞点的分布位置产生周期性变化;随着进气阻滞点产生的位置沿着进气壁面的缓慢移动,爆轰波头每次与采样点相遇时,采样点与上个进气阻滞点之间的距离会逐渐发生变化,因此采样点的压强峰值便产生了低频率的起伏振荡,即形成了所谓的低频爆轰不稳定性。  相似文献   
253.
固体火箭发动机羽流具有高温、高速与强辐射特征,羽流温度是发动机工作状态与性能的重要表征参数。准确测量固体火箭发动机羽流温度对了解发动机内部燃烧情况以及发动机综合性能具有重要的参考价值。随着激光与光谱学的发展,激光光谱技术逐步应用于固体推进剂燃烧及发动机羽流温度测量。辐射光谱测温法通过测量火焰辐射光谱来实现温度的非接触在线测量,具有测温范围宽、响应快及可靠性高等优点,可应用于固体火箭发动机羽流温度测量。在此提出了基于火焰辐射光谱的固体火箭发动机羽流温度测量方法,采用350~1 000 nm波段光纤光谱仪搭建了发动机羽流火焰辐射光谱测量系统,利用标准辐射黑体炉开展光谱仪响应系数标定,获得响应系数随波长的变化曲线,并以此用作羽流辐射光谱数据修正。之后将该测量系统应用于标准Φ118固体火箭发动机地面试验,开展典型12%铝质量含量推进剂发动机羽流辐射光谱实验测量,选取不同时刻羽流辐射光谱分析了发动机羽流辐射光谱特征,并利用双色法灰性判断原理对羽流火焰灰体特性进行讨论,验证在675~745 nm波段发动机羽流火焰辐射可近似认为灰体,该波段辐射率随波长变化最大相对偏差为4.01%,相对均方差为1.53%。因此,基于普朗克辐射定律开展辐射光谱拟合参数获得不同时刻羽流温度与辐射率参数,并讨论测量结果与发动机工作状态的关系。最后,开展12%,15%与19%铝质量含量的不同推进剂配方固体火箭发动机羽流辐射光谱测量,将辐射光谱法温度测量值与理论热力计算值进行比较,两者最大偏差值为5.40%,讨论了不同铝含量推进剂发动机羽流辐射光谱特征,并结合温度与辐射率测量结果,分析了固体推进剂铝含量对辐射光谱、羽流温度及辐射率的影响。通过固体火箭发动机羽流辐射光谱测温方法研究,为固体火箭发动机性能评估及推进剂配方优化等研究提供了有效的羽流参数测量手段。分析获得的推进剂铝含量对发动机羽流辐射光谱、温度及辐射率参数的影响,为降低固体发动机羽流特征信号提供了重要的实验数据支撑。  相似文献   
254.
斜爆轰发动机和激波诱导燃烧冲压发动机在高马赫数吸气式发动机中具有重要应用前景,但是斜爆轰发动机是否具有足够大的净推力,还是一个未知的问题,因此需要对高马赫数冲压发动机的推进性能以及提高推力的方法进行理论研究.本文主要分为3部分.第1部分理论研究了超燃冲压发动机中的爆燃波和爆轰波的传播特性.保证发动机稳定燃烧是提高推力的...  相似文献   
255.
针对一道有关"光发动机"的习题解答问题,通过文献研究了光发动机的工作原理和NO2的相关性质,提出了习题的修改意见和对习题命制的思考。  相似文献   
256.
在爆震室内快速形成稳定传播的爆轰波是脉冲爆震发动机的关键.本文利用有限速率化学反应模型,考虑粘性、热对流,基于N-S方程对氢气与空气/氧气为反应混合物的爆震发动机爆震室内流场进行计算.从流场压力、速度、涡量、湍流动能等方面研究爆震室壁面条件对燃烧爆轰性能的影响,分析流场爆轰波压力与流场湍动能的关系,讨论可燃气体燃烧转爆轰的机理.结果表明:爆震室内燃烧爆轰机理受到化学反应能量释放、壁面摩擦效应、壁面与外界热交换的影响.在文中讨论的范围内,相比于半圆形和三角形的爆震室装置,矩形的爆震室增强装置能在更短的时间内得到较高的爆轰波压力和湍动能峰值.壁面粗糙层高度(粗糙度)影响爆震室的燃烧爆轰性质.当壁面粗糙度为0.15mm时,粗糙度对爆轰的激励作用大于抑制作用,能较快形成稳定的爆轰波,且推力为35.5N;随着壁面对流换热系数的增大,爆震室壁面的散热加剧.当壁面对流换热系数大于临界值2.6W/(m2·K)时,爆震室内不能形成稳定的爆震波.  相似文献   
257.
提出了一套系统化多级机理简化策略,包含基于误差传播的直接关系图法、峰值浓度分析法、线性同分异构体集总法、主组分分析法、温度敏感性分析和产率分析法,并将其应用于汽油四组分表征燃料详细反应机理的简化,构建了适用于HCCI发动机燃烧边界下的简化机理模型,包含149个物种、414个反应。通过与激波管、快速压缩机、增压HCCI发动机实验数据的对比验证表明,新机理可以准确地预测较宽范围条件下的着火滞燃期,在HCCI发动机的单区模型计算中,该机理对缸内燃烧和排放的预测结果是令人满意的。放热率分析表明, R + O2反应是控制中间温度区放热的关键基元反应,在高压低温下,异辛烷的放热起到决定性作用。添加2-戊烯之后,使得四组分模型相较于三组分模型更为准确,尤其是对于第一阶段着火滞燃期有显著影响,为进一步探索调和燃料组分比例控制HCCI燃烧提供了一条新思路。  相似文献   
258.
双燃料压燃(RCCI)是一种很有前景的发动机新型燃烧方式,能在小负荷到中高负荷范围内实现发动机高效清洁燃烧,为了将RCCI拓展到更高负荷,需要对其缸内燃油分层和燃烧过程开展更深入研究。本文在一台双燃料光学发动机上采用燃油-示踪剂平面激光诱导荧光法(PLIF),对RCCI着火前缸内燃油分层进行定量测量,选用甲苯作为示踪剂,利用266 nm脉冲激光激发甲苯荧光,发动机转速1200 r·min-1,平均指示压力6.9×105 Pa,气道喷射异辛烷,缸内在上止点前10°喷射正庚烷。采用燃油-气体绝热混合假设,对PLIF测量结果进行温度不均匀性修正,以上止点后5°曲轴转角下的测量结果为例,不修正相比修正测试区域内的最大当量比高估15%。根据实验结果,利用Chemkin软件分析了活性、浓度和温度分层对燃烧滞燃期的影响,结果显示燃料活性分层和浓度分层共同决定RCCI的着火滞燃期,其中活性分层影响要大于浓度分层,而温度分层对着火滞燃期影响很小。RCCI燃烧过程自发光的高速成像结果表明,着火过程首先出现在燃烧室边缘的高活性区域,随后火焰向燃烧室中心处的低活性区域发展,碳烟辐射光图像显示碳烟主要形成于燃烧室边缘的高活性区域。  相似文献   
259.
固体火箭冲压发动机补燃室沉积数值模拟   总被引:1,自引:0,他引:1  
考虑液态颗粒碰撞和聚合过程、液态颗粒和壁面碰撞过程,建立了固体火箭冲压发动机补燃室沉积数值计算模型,对模型发动机补燃室内颗粒之间碰撞、沉积的相互作用过程进行了数值模拟,得到了颗粒沿轴向和沿出口平面径向方向的分布情况,并计算得到了补燃室壁面不同段的沉积层厚度值。将计算结果与试验结果进行对比,最大误差为0.8mm,表明该计算模型具有较高的计算精度。  相似文献   
260.
采用壁面燃料喷射并结合凹槽设施作为火焰稳定器是超燃冲压发动机设计的理想方案,本文采用非定常数值模拟研究了带凹槽的超燃冲压发动机壁面横向喷射乙烯的火焰稳定过程。结果表明:在燃烧室入口马赫数2、静温530K、静压0.1MPa条件下,冷流流场达到稳定所需时间约为2ms;当凹槽内喷油当量比为0.1时,火焰稳定模式为燃料尾迹和凹槽共同形成的回流区稳定模式;当凹槽内喷油当量比为0.315时,火焰稳定模式完全处于凹槽回流区稳定模式;当凹槽前端壁面注油当量比为0.05时,火焰稳定模式为凹槽回流区稳焰模式;当凹槽前端壁面注油当量比为0.2时,火焰稳定模式为射流回流区和凹槽回流区稳焰模式。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号