首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4322篇
  免费   894篇
  国内免费   1537篇
化学   2591篇
晶体学   15篇
力学   1422篇
综合类   177篇
数学   426篇
物理学   2122篇
  2024年   37篇
  2023年   106篇
  2022年   135篇
  2021年   147篇
  2020年   145篇
  2019年   143篇
  2018年   91篇
  2017年   124篇
  2016年   132篇
  2015年   172篇
  2014年   312篇
  2013年   260篇
  2012年   211篇
  2011年   235篇
  2010年   239篇
  2009年   220篇
  2008年   505篇
  2007年   332篇
  2006年   316篇
  2005年   345篇
  2004年   361篇
  2003年   327篇
  2002年   275篇
  2001年   233篇
  2000年   176篇
  1999年   137篇
  1998年   125篇
  1997年   138篇
  1996年   140篇
  1995年   123篇
  1994年   108篇
  1993年   80篇
  1992年   66篇
  1991年   68篇
  1990年   62篇
  1989年   56篇
  1988年   27篇
  1987年   16篇
  1986年   9篇
  1985年   4篇
  1984年   2篇
  1983年   6篇
  1982年   3篇
  1979年   3篇
  1951年   1篇
排序方式: 共有6753条查询结果,搜索用时 0 毫秒
991.
纳米二氧化硅(SiO2)颗粒以其高硬度、高比表面积、高稳定、价格合理等优势被广泛应用于复合材料的制备中,获得的SiO2/聚合物复合材料通常具有优良的机械性能、很好的热稳定性以及增强的光学和电性能.近年来,随着聚合诱导自组装(PISA)的提出与发展,研究者们基于PISA发展了多种制备不同形貌聚合物纳米粒子的简便方法,为制...  相似文献   
992.
利用DHR-9401型落锤冲击试验机,结合最小碎裂能方法,研究了中空钢化夹层玻璃的厚度、结构配置对其抗冲击性能的影响,并从冲击力载荷峰值、能量吸收率、应变等方面对影响效应进行评估。实验结果表明:玻璃作为日常生活中的承载结构,其厚度和结构配置对性能有很大影响,在控制试样总厚度相同或不同的前提下,随着冲击层厚度的增加,中空钢化夹层玻璃的抗冲击性能明显提高;在试样总厚度不同的前提下,随着内层玻璃厚度的增加,中空钢化夹层玻璃的承载能力显著提高。  相似文献   
993.
贝壳珍珠层复合结构是一种有效的抗压结构系统,微观上具有Voronoi随机结构,具有良好的力学特性。为了研究仿贝壳珍珠层Voronoi结构在冲击载荷下的动态力学响应,建立了一种铝/乙烯基复合材料的三维Voronoi模型。首先,应用随机Voronoi技术建立仿贝壳珍珠层Voronoi随机模型,然后在随机多边形铝片之间引入黏结层,模拟黏结和分层过程,从最大变形、损伤分布和耗散能量等方面探讨Voronoi片板模型在弹丸冲击荷载作用下的力学性能,并与规则片板模型进行对比分析。结果显示:Voronoi结构更有利于冲击能量的扩散与吸收,减小应力集中,更好地发挥能量共享机制;而规则模型的冲击损伤主要集中在弹丸冲击点附近区域。最后讨论了黏结层厚度和分块尺寸对Voronoi模型力学性能的影响,结果表明:分块尺寸对Voronoi模型抗冲击性能的影响很小;黏结层对损伤耗散能和塑性能的影响很明显,黏结层越薄,模型的抗冲击性能越好。  相似文献   
994.
王家乐  李洪伟  王小兵  梁昊  周恩  苏洪  赵金耀 《爆炸与冲击》2024,44(4):043101-1-043101-9

为探究钽电容在冲击载荷作用下的失效机制,设计并开展了5组不同强度的钽电容水下爆炸冲击实验,研究了冲击载荷作用下钽电容的电压瞬变特性,通过漏电、充电电流变化分析了钽电容的失效模式,利用扫描电镜观察钽电容的微观结构,讨论了冲击载荷作用下钽电容的失效机理。结果表明:钽电容受冲击后发生短路失效,电压大幅度降低,在自愈完成后电压缓慢上升。随着冲击波超压的增大,钽电容失效的概率增大,钽电容失效的临界超压约为32 MPa。不同类型的电压变化对应不同的失效模式,包括击穿后瞬间自愈、击穿后缓慢自愈和多次击穿自愈。不同类型电压变化的初始漏电电流峰值有较大差别,Ⅰ类电流峰值为2.5~5 A,Ⅱ类为1~2 A,Ⅲ类为8~9 A,且峰值越大,峰宽越小。冲击载荷作用下钽电容的微观失效机理与其氧化膜的瑕疵相关,机理包括氧化膜中微裂缝扩展使得局部电场强度超过击穿场强造成击穿、氧化膜较薄区域下方的杂质及晶态膜突出形成导电通道、贯穿型裂缝形成后气体电离导致的击穿。

  相似文献   
995.

跨介质航行是近年来无人机应用领域的重要研究内容。本文通过数值模拟方法,对某型号飞翼式无人机在不同工况下发射入水过程流场演变及运动姿态进行对比分析,同时对其入水冲击响应进行了数值仿真研究,得到不同发射工况下无人机的入水冲击载荷响应情况。结果表明:该型号无人机入水过程的姿态变化同时受水面条件及发射工况影响,静水工况下以25°入水角、4 m/s的条件发射无人机入水时,可实现最优的姿态恢复时间及入水冲击载荷响应值。

  相似文献   
996.
高分子物理领域的挑战性难题之一是调控高分子的结晶行为.高分子结构具有多尺度的特点,且易受到各种本征因素以及加工过程中引入的外场与受限作用的影响.高分子的结晶过程复杂多变,为避免最终产品性能的良莠不齐,促进高分子材料的实际生产和应用,需要建立高分子结构与性能的直接关系并实现对高分子结晶结构的精细化调控.本文以几种典型高分子为例,重点阐述了我们课题组在有关薄膜和纳米孔道构筑的限域空间与分子链预有序熔体对高分子结晶行为的影响、相关结晶结构调控机制以及结构-性能关系等方面的研究工作,阐明了聚合物多层次结构调控领域存在的科学问题,并展望了其未来发展方向.  相似文献   
997.
实体肿瘤组织中固有的高渗透压、高细胞密度和乏血供等生物屏障导致纳米药物难以在肿瘤组织中浸润,从而难以渗透到肿瘤内部发挥治疗作用.为了克服上述纳米药物的被动扩散瓶颈,提升其在肿瘤组织中的渗透效果,本文设计了一种基于主动转胞吞作用来实现跨细胞传递和肿瘤渗透的纳米载药系统.利用γ-谷氨酰胺转移酶(GGT)响应的两性离子基团(BGA)修饰了以喜树碱(CPT)为核心的第四代树枝状大分子(G4/CPT),制备了一种具有精准结构和肿瘤特异性酶响应电荷反转的药物-树枝状大分子键合物(G4/CPT-BGA),其分子量为20 kDa,粒径约为5 nm,表面电势约为-2 mV.研究发现G4/CPT-BGA能够被GGT催化产生由负到正的电荷反转,并且能够水解释放出所携载的化疗药物喜树碱,从而有效杀伤肿瘤细胞.通过流式细胞术实验和激光共聚焦显微镜证明了G4/CPT-BGA能通过小窝蛋白介导的细胞内吞被肿瘤细胞摄取,随后通过高尔基体介导的细胞外排途径被释放出细胞,由此通过这种迭代不断的"内吞-外排"作用(转胞吞)实现跨细胞传递.最后,通过激光共聚焦显微镜观察G4/CPT-BGA在三维肿瘤球中的浸润效果,证明了G4...  相似文献   
998.
爆炸和冲击载荷下金属材料及结构的动态失效仿真   总被引:1,自引:1,他引:0       下载免费PDF全文
通过数值模拟研究爆炸冲击载荷下金属材料和结构的动态失效规律,对表征爆炸冲击毁伤效应及设计新型抗冲击结构有重要意义.强动载下金属材料失效涉及材料大变形、热力耦合、材料状态变化等多个复杂物理过程,给数值仿真带来了极大挑战,其中包括裂纹、剪切带等复杂失效模式的几何描述、动态失效准则的确定、塑性与损伤耦合演化的描述等问题.针对这些挑战性问题,基于能量变分建立描述金属动态失效过程的热弹塑性相场理论和计算模型,实现了断裂与剪切带失效模式的统一描述,并提出了其显式有限元高效求解策略.进一步将该模型应用于爆炸冲击载荷下金属脆韧失效模式转变、绝热剪切带(ASBs)自组织及冲击波作用下薄壁圆盘失效形式转变三个典型金属动态失效问题,验证了理论模型的准确性及计算模型的稳健性.该工作为后续开展基于仿真的爆炸冲击毁伤评估及防护结构设计研究奠定了基础.  相似文献   
999.
王军  姚熊亮  郭君 《爆炸与冲击》2015,35(6):832-838

为研究安装甲板模拟器的浮动冲击平台系统考核舰载设备的机理,对整个系统建立有限元模型进行数值模拟并建立力学模型进行了理论分析。根据船体甲板结构产生的垂向低通滤波特性,提出甲板模拟器具有减缓高频冲击并满足设备安装频率要求的作用。将被试设备的浮动冲击平台考核系统简化为有阻尼的三自由度系统强迫振动模型,通过拉普拉斯变换方法求解了不同冲击环境下被试设备的响应。数值模拟与理论计算结果比较吻合,被试设备响应迅速达到峰值后逐渐衰减,振动频率由高频向低频过渡,在分析浮动冲击平台舰载设备考核系统长时间响应时需考虑阻尼的影响。

  相似文献   
1000.
引力现象是最常见的,例如,地球上的物体都有重量,地球绕太阳运转,都是由于引力的作用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号