首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   736篇
  免费   34篇
  国内免费   291篇
化学   664篇
晶体学   2篇
力学   97篇
综合类   35篇
数学   35篇
物理学   228篇
  2024年   5篇
  2023年   26篇
  2022年   21篇
  2021年   33篇
  2020年   26篇
  2019年   39篇
  2018年   18篇
  2017年   23篇
  2016年   50篇
  2015年   35篇
  2014年   55篇
  2013年   55篇
  2012年   54篇
  2011年   45篇
  2010年   41篇
  2009年   47篇
  2008年   35篇
  2007年   48篇
  2006年   42篇
  2005年   27篇
  2004年   31篇
  2003年   30篇
  2002年   23篇
  2001年   44篇
  2000年   32篇
  1999年   16篇
  1998年   21篇
  1997年   18篇
  1996年   14篇
  1995年   21篇
  1994年   19篇
  1993年   13篇
  1992年   10篇
  1991年   14篇
  1990年   14篇
  1989年   10篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1982年   1篇
排序方式: 共有1061条查询结果,搜索用时 31 毫秒
211.
低速下润滑接触区补充供油机制的研究   总被引:1,自引:1,他引:0  
在滚动轴承运行的过程中,滚道上的润滑剂在滚动体的反复碾压下,厚度不断减小,轴承最终进入乏油润滑状态.为了解释长期工作在乏油条件下的轴承依旧能够保持较长时间的良好工作状态,有必要研究在轴承中是否存在某种自发的补充供油机制.本文作者基于球盘接触模型,分别考虑毛细力和分离压力在润滑油迁移过程中的作用,建立赫兹接触区附近油层分布模型,并以此修正弹流计算中的入口供油条件,采用统一Reynolds方程法计算在静止或低速条件下的润滑油膜厚度和压力分布,研究毛细力和分离压力的补充供油机制对润滑条件的改善作用.  相似文献   
212.
显微荧光光谱已经成为流体包裹体系统测试分析中较为成熟的一项技术,可用于区分不同类型的原油与油包裹体,从而为研究含油气盆地的油气成藏历史提供重要依据。不同来源的原油在运聚的过程中可能会发生不同程度的混合作用,为了有效识别这一类地质过程,基于不同比例的原油配比混合实验,研究原油混合后的显微荧光光谱的具体变化特征。结果表明: 原油混源使得显微荧光光谱参数λmax,QF-535和CIE-XY发生了非线性变化,具体表现为混源后原油的荧光光谱参数均介于两个端元油之间,混源油中某一端元油的比例越大,其荧光光谱参数越靠近这一端元油。在CIE-XY色品图中主要表现为非线性渐变的荧光颜色特征。光谱谱形的改变主要表现为谱形由“单峰型”变为“双峰型”和“三峰型”,同时主峰波长和次峰波长保留了两个端元油的信息;QF-535与混源比例可建立曲线用来定量计算两端元油的相对贡献度。综合上述荧光光谱参数和谱形的变化特征,利用原油和油包裹体的显微荧光分析,识别出东海盆地西湖凹陷A气田有三种不同类型原油充注,中间还发生了一次原油混源作用,即蓝绿色荧光原油和黄色荧光原油发生了混合,定量计算其混源程度为介于47%~55%。  相似文献   
213.
采用可见/近红外光谱技术结合化学计量学方法对油茶籽油三元体系掺假进行定量检测研究。将菜籽油和花生油按不同比例掺入纯油茶籽油中,获得掺假样本。采集纯油茶籽油及掺假样本在350~1 800 nm范围内的可见/近红外光谱数据,随机分为校正集和预测集,并从不同建模波段、预处理方法及建模方法角度对掺假预测模型进行优化。研究结果表明,菜籽油、花生油和总掺伪量的最优建模波段及预处理方法分别为750~1 770,900~1 770 ,870~1 770 nm和多元散射校正(MSC)、标准归一化处理(SNV)和二阶微分,而最优的建模方法均为最小二乘支持向量机(LSSVM)。对于最优掺假模型,菜籽油、花生油和总掺伪量的预测集相关系数(Rp)和预测均方根误差(RMSEP)分别为0.963,0.982,0.993和2.1%,1.5%,1.8%。由此可见,可见/近红外光谱技术结合化学计量学方法可以用于油茶籽油的三元体系掺假定量检测。  相似文献   
214.
混油钻井液对色谱、光谱录井技术发现和评价油气层带来了严重影响.为了准确识别和定量评价混油钻井液条件下所钻遇的油层,创新采用高分辨率核磁共振录井技术随钻检测钻井液T2谱及其含油率的变化.不同油品在钻井液中的混合实验结果表明,混油钻井液为水包油乳液,两种不同的油品在钻井液中难以混合,在T2谱上呈现相互独立的峰,据此可以直观、准确地识别所钻遇的油层;并可根据归一法、外标法定量评价钻井液中的地层油含油率.经现场应用,取得了与室内实验相一致的效果,证明了该项技术的有效性.  相似文献   
215.
汽车空调系统中使用较多的制冷剂是R134a,但其GWP(全球变暖潜能值)高达1300,R1234yf作为一种新型制冷剂,其GWP仅为4,且具有与R134a相似的热力学性质。基于动磁式无油直线压缩机对R1234yf和R134a两种制冷剂的性能进行了试验分析,结果表明,当换热器温度分别为-3℃(蒸发器)、40℃(冷凝器)时,R1234yf和R134a的冷却能力分别为92 W和117 W;在冷凝器温度为50℃时,R1234yf的冷却性能与R134a几乎相同。验证了R1234yf替代R134a的可行性。  相似文献   
216.
酯交换生物柴油的柱层析分离纯化与分析   总被引:1,自引:0,他引:1  
以文冠果油通过酯交换法制备的粗生物柴油为原料,采用柱层析进行精制纯化,然后利用气相色谱、GC-MS、红外光谱和1 H核磁共振等分析产物的成分。粗油经柱层析分离出两个馏分:石油醚洗脱馏分(A1),主要是由文冠果油经酯交换反应得到的生物柴油,包括亚油酸甲酯、油酸甲酯等;甲醇洗脱馏分(A2)主要是甘油馏分,是油脂酯交换反应的副产物。结果表明:由柱层析进行分离纯化后,生物柴油的纯度由原来的77.51%提高到93.87%,生物柴油的回收率也高达91.04%;红外光谱和1 H核磁共振的分析结果进一步表明柱层析能够有效地提高生物柴油的纯度,为工业化纯化生物柴油提供了依据。  相似文献   
217.
建立了赖百当油的全二维气相色谱-飞行时间质谱(GC×GC/TOF-MS)指纹图谱,通过质谱库检索、保留指数比对、标准品同时进样验证与文献比较,共鉴定了108个组分,占挥发油总量的94.81%,主要成分为:苯丙酸乙酯(30.92%)、绿花白干层醇(9.85%)、苯丙酸(7.91%)、乙酸龙脑酯(2.87%)、乙酸(2.81%)、杜香醇(2.41%)、喇叭烯(2.14%)等。本实验首次用GC×GC/TOF-MS对赖百当油进行了分析,并初步进行了致香机理的阐释,为该植物的开发、调香应用和品控提供了技术支撑。  相似文献   
218.
为提高废木屑热解油品质,使其能够作为发动机燃料使用,提出了一条新的热解油提质路线。首先将热解原油进行基于组分分离的乙醚萃取和化学催化相结合的精制过程,得到精制热解油;其次,利用超声反应器制备了精制热解油/柴油新型混合燃料,以单位体积柴油所溶解的精制油的体积定为S值,作为判断乳化效果的准则,考察了不同的影响因素对S值的影响。研究结果表明,乳化剂添加量对S值影响较大,在V精制生物油:V柴油:V乳化剂=10:30:5条件下,存在最佳的乳化超声操作条件:超声时间、超声电功率、乳化温度分别为20 min、540 W、50℃。制备了不同S值的乳化燃料,通过对燃料物理指标的分析发现,该燃料性质稳定、燃烧性能优良,有望成为柴油的替代产品。  相似文献   
219.
聚合物驱油作为一种重要的三次采油方法,在国内外油气田开发中得到了广泛应用.聚合物驱油效果的好坏取决于多种因素,其中很重要的一个因素是聚合物的注入能力,这一因素直接决定了聚合物驱油的成败.本文利用实验方法研究了聚合物的分子质量、岩样的渗透率以及注入速度等因素对聚合物注入能力的影响.结果表明,聚合物溶液具有粘弹性,注入速度增大,注入性变差.同时聚合物分子量越大,岩心渗透率越低,聚合物注入性越差.对于孤岛中一区,平均孔隙半径与聚合物分子折算半径之比大于10时,聚合物可顺利注入地层.研究结果可用于指导现场聚合物的选取,从而有效保证聚合物的注入能力,使聚合物驱油达到预期效果.  相似文献   
220.
木材正辛醇液化产物的红外光谱分析   总被引:2,自引:0,他引:2  
溶剂溶解技术是生物质液化的重要过程之一。为了在温和条件下从生物质中生产高质量的液体燃料,有必要开发新型液化溶剂。而对液化产物的分析则是评价溶剂液化效果的主要途径。在不锈钢高压釜中进行杨木粉在酸化正辛醇中的液化反应,对液化产物先后用丙酮,正己烷萃取,得到液化残渣、重质油和轻质油。通过对液化残渣、重质油和轻质油的红外光谱分析考察了木材中纤维素、半纤维素和木质素的液化规律和转化机理。结果表明,木材液化油品是复杂的混合物,含有羟基、羰基、甲氧基、芳基和醚类化合物。纤维素/半纤维素比木质素更容易液化。纤维素/半纤维素主要转化为轻质油,而木质素液化产物主要是重质油。在150 ℃木质素液化降解生成小分子芳烃,继续升高液化温度导致小分子芳烃重聚合。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号