首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8612篇
  免费   1700篇
  国内免费   1071篇
化学   6456篇
晶体学   130篇
力学   513篇
综合类   74篇
数学   475篇
物理学   3735篇
  2024年   44篇
  2023年   131篇
  2022年   358篇
  2021年   418篇
  2020年   564篇
  2019年   374篇
  2018年   331篇
  2017年   304篇
  2016年   449篇
  2015年   396篇
  2014年   462篇
  2013年   760篇
  2012年   512篇
  2011年   570篇
  2010年   405篇
  2009年   480篇
  2008年   512篇
  2007年   554篇
  2006年   505篇
  2005年   407篇
  2004年   338篇
  2003年   358篇
  2002年   253篇
  2001年   206篇
  2000年   223篇
  1999年   161篇
  1998年   173篇
  1997年   141篇
  1996年   149篇
  1995年   126篇
  1994年   115篇
  1993年   98篇
  1992年   96篇
  1991年   62篇
  1990年   66篇
  1989年   47篇
  1988年   41篇
  1987年   30篇
  1986年   31篇
  1985年   20篇
  1984年   14篇
  1983年   8篇
  1982年   9篇
  1981年   9篇
  1980年   7篇
  1979年   14篇
  1978年   9篇
  1975年   6篇
  1974年   11篇
  1973年   11篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
The artificially accurate design of nonmetal electrocatalysts’ active site has been a huge challenge because no pure active species with the specific structure could be strictly controlled by traditional synthetic methods. Species with a multiconfiguration in the catalyst hinder identification of the active site and the subsequent comprehension of the reaction mechanism. We have developed a novel electro-assisted molecular assembly strategy to obtain a pure pentagon ring on perfect graphene avoiding other reconstructed structures. More importantly, the active atom was confirmed by the subtle passivation process as the topmost carbon atom. Recognition of the carbon-defect electrocatalysis reaction mechanism was first downsized to the single-atom scale from the experimental perspective. It is expected that this innovative electro-assisted molecular assembly strategy could be extensively applied in the active structure-controlled synthesis of nonmetal electrocatalysts and verification of the exact active atom.  相似文献   
2.
Understanding the thermal aggregation behavior of metal atoms is important for the synthesis of supported metal clusters. Here, derived from a metal–organic framework encapsulating a trinuclear FeIII2FeII complex (denoted as Fe3) within the channels, a well-defined nitrogen-doped carbon layer is fabricated as an ideal support for stabilizing the generated iron nanoclusters. Atomic replacement of FeII by other metal(II) ions (e.g., ZnII/CoII) via synthesizing isostructural trinuclear-complex precursors (Fe2Zn/Fe2Co), namely the “heteroatom modulator approach”, is inhibiting the aggregation of Fe atoms toward nanoclusters with formation of a stable iron dimer in an optimal metal–nitrogen moiety, clearly identified by direct transmission electron microscopy and X-ray absorption fine structure analysis. The supported iron dimer, serving as cooperative metal–metal site, acts as efficient oxygen evolution catalyst. Our findings offer an atomic insight to guide the future design of ultrasmall metal clusters bearing outstanding catalytic capabilities.  相似文献   
3.
The synthesis and characterisation of a family of block codendrimers consisting of highly versatile mesogenic and carbazole‐containing 2,2‐bis(hydroxymethyl)propionic acid (bis‐MPA) dendrons are reported. The liquid‐crystal behaviour was investigated by means of differential scanning calorimetry, polarised‐light optical microscopy and X‐ray diffraction. Depending on the chemical structure of the constituent dendrons, the codendrimers show lamellar or columnar mesophases. On the basis of the experimental results, models both at the molecular level and in the mesophase are proposed. The physical properties of the block codendrimers derived from the presence of the carbazole moiety in their structure were investigated: photoluminescence in solution and in the mesophase, electrochemical behaviour and hole transport. Electrodeposition of carbazole dendrons afforded a globular supramolecular conformation in which the mesogenic molecular side plays a key role.  相似文献   
4.
Covalent organic frameworks (COFs) are a new class of crystalline porous polymers comprised mainly of carbon atoms, and are versatile for the integration of heteroatoms such as B, O, and N into the skeletons. The designable structure and abundant composition render COFs useful as precursors for heteroatom-doped porous carbons for energy storage and conversion. Herein, we describe a multifunctional electrochemical catalyst obtained through pyrolysis of a bimetallic COF. The catalyst possesses hierarchical pores and abundant iron and cobalt nanoparticles embedded with standing carbon layers. By integrating these features, the catalyst exhibits excellent electrochemical catalytic activity in the oxygen reduction reaction (ORR), with a 50 mV positive half-wave potential, a higher limited diffusion current density, and a much smaller Tafel slope than a Pt-C catalyst. Moreover, the catalyst displays superior electrochemical performance toward the hydrogen evolution reaction (HER), with overpotentials of −0.26 V and −0.33 V in acidic and alkaline aqueous solution, respectively, at a current density of 10 mA cm−2. The overpotential in the catalysis of the oxygen evolution reaction (OER) was 1.59 V at the same current density.  相似文献   
5.
Defects play a central role in controlling the electronic properties of two-dimensional (2D) materials and realizing the industrialization of 2D electronics. However, the evaluation of charged defects in 2D materials within first-principles calculation is very challenging and has triggered a recent development of the WLZ (Wang, Li, Zhang) extrapolation method. This method lays the foundation of the theoretical evaluation of energies of charged defects in 2D materials within the first-principles framework. Herein, the vital role of defects for advancing 2D electronics is discussed, followed by an introduction of the fundamentals of the WLZ extrapolation method. The ionization energies (IEs) obtained by this method for defects in various 2D semiconductors are then reviewed and summarized. Finally, the unique defect physics in 2D dimensions including the dielectric environment effects, defect ionization process, and carrier transport mechanism captured with the WLZ extrapolation method are presented. As an efficient and reasonable evaluation of charged defects in 2D materials for nanoelectronics and other emerging applications, this work can be of benefit to the community.  相似文献   
6.
《Physics letters. A》2019,383(17):2090-2092
In this paper, we have used Monte Carlo (MC) method to simulate and study the temperature and doping effects on the electric conductivity of fullerene (C60). The results show that the band gap has reduced by the doping and the charge carrier transport is facilitated from valence band to conduction band by the temperature where is touched a 300 K. In this case, the conductivity reached a value of 4×107Scm1. The electric conductivity of C60 can increase by the triphenylmethane dye crystal violet (CV) alkali metal to reach 4×103Scm1 at 303 K. Our results of MC simulation have a good agreement with those extracted from literature [10], [33].  相似文献   
7.
The practical application of Shilov-type Pt catalysis to the selective hydroxylation of terminal aliphatic C−H bonds remains a formidable challenge, due to difficulties in replacing PtIV with a more economically viable oxidant, particularly O2. We report the potential of employing FeCl2 as a suitable redox mediator to overcome the kinetic hurdles related to the direct use of O2 in the Pt reoxidation. For the selective conversion of butyric acid to γ-hydroxybutyric acid (GHB), a significantly enhanced catalyst activity and stability (turnover numbers (TON)>30) were achieved under 20 bar O2 in comparison to current state-of-the-art systems (TON<10). In this regard, essential reaction parameters affecting the overall activity were identified, along with specific additives to attain catalyst stability at longer reaction times. Notably, deactivation by reduction to Pt0 was prevented by the addition of monodentate pyridine derivatives, such as 2-fluoropyridine, but also by introducing varying partial pressures of N2 in the gaseous atmosphere. Finally, stability tests revealed the involvement of PtII and FeCl2 in catalyzing the non-selective overoxidation of GHB. Accordingly, in situ esterification with boric acid proved to be a suitable strategy to maintain enhanced selectivities at much higher conversions (TON>60). Altogether, a useful catalytic system for the selective hydroxylation of primary aliphatic C−H bonds with O2 is presented.  相似文献   
8.
Developing clean and sustainable energies as alternatives to fossil fuels is in strong demand within modern society. The oxygen evolution reaction (OER) is the efficiency-limiting process in plenty of key renewable energy systems, such as electrochemical water splitting and rechargeable metal–air batteries. In this regard, ongoing efforts have been devoted to seeking high-performance electrocatalysts for enhanced energy conversion efficiency. Apart from traditional precious-metal-based catalysts, nickel-based compounds are the most promising earth-abundant OER catalysts, attracting ever-increasing interest due to high activity and stability. In this review, the recent progress on nickel-based oxide and (oxy)hydroxide composites for water oxidation catalysis in terms of materials design/synthesis and electrochemical performance is summarized. Some underlying mechanisms to profoundly understand the catalytic active sites are also highlighted. In addition, the future research trends and perspectives on the development of Ni-based OER electrocatalysts are discussed.  相似文献   
9.
We describe a semi-analytical numerical method for coherent isotropic scattering time-dependent radiative transfer problems in slab geometry. This numerical method is based on a combination of two classes of numerical methods: the spectral methods and the Laplace transform (LTSN) methods applied to the radiative transfer equation in the discrete ordinates (SN) formulation. The basic idea is to use the essence of the spectral methods and expand the intensity of radiation in a truncated series of Laguerre polynomials in the time variable and then solve recursively the resulting set of “time-independent” SN problems by using the LTSN method. We show some numerical experiments for a typical model problem.  相似文献   
10.
二氧化钒薄膜的低温制备及其性能研究   总被引:12,自引:0,他引:12       下载免费PDF全文
针对VO2薄膜在微测辐射热计上的应用,采用射频反应溅射法,在室温下制备氧化钒薄膜;研究了氧分压对薄膜沉积速率、电学性质及成分的影响.通过调节氧分压,先获得成分接近VO2的非晶化薄膜,再在400℃空气中氧化退火,便可制得高电阻温度系数,低电阻率的VO2薄膜,电阻温度系数约为-4%/℃,薄膜方块电阻为R为100—300kΩ;薄膜在室温下沉积,400℃下退火的制备方法与微机电加工(micro electromechanic 关键词: 二氧化钒 电阻温度系数 氧分压 射频反应溅射法  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号