首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   583篇
  免费   77篇
  国内免费   80篇
化学   605篇
晶体学   21篇
力学   2篇
综合类   5篇
物理学   107篇
  2024年   1篇
  2023年   1篇
  2022年   4篇
  2021年   10篇
  2020年   13篇
  2019年   16篇
  2018年   13篇
  2017年   12篇
  2016年   22篇
  2015年   25篇
  2014年   21篇
  2013年   63篇
  2012年   29篇
  2011年   32篇
  2010年   27篇
  2009年   29篇
  2008年   39篇
  2007年   40篇
  2006年   37篇
  2005年   33篇
  2004年   34篇
  2003年   33篇
  2002年   31篇
  2001年   14篇
  2000年   21篇
  1999年   12篇
  1998年   23篇
  1997年   12篇
  1996年   15篇
  1995年   8篇
  1994年   15篇
  1993年   7篇
  1992年   17篇
  1991年   7篇
  1990年   4篇
  1989年   3篇
  1988年   4篇
  1987年   2篇
  1986年   8篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有740条查询结果,搜索用时 15 毫秒
731.
The electronic structure, electronic charge density, and band gaps of Ba2MYTe5 (M: Ga, In) single crystals are simulated using the full potential linearized augmented plane wave package WIEN2k.  相似文献   
732.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.  相似文献   
733.
The academic and industrial aspects of the preparation, characterization, mechanical and materials properties, crystallization behavior, melt rheology, and foam processing of pure polylactide (PLA) and PLA/layered silicate nanocomposites are described in this feature article. Recently, these materials have attracted considerable interest in polymer science research. PLA is linear aliphatic thermoplastic polyester and is made from agricultural products. Hectorite and montmorillonite are among the most commonly used smectite‐type layered silicates for the preparation of nanocomposites. Smectites are a valuable mineral class for industrial applications because of their high cation exchange capacities, surface area, surface reactivity, adsorptive properties, and, in the case of hectorite, high viscosity, and transparency in solution. In their pristine form, they are hydrophilic in nature, and this property makes them very difficult to disperse into a polymer matrix. The most common way to overcome this difficulty is to replace interlayer cations with quaternized ammonium or phosphonium cations, preferably with long alkyl chains. In general, polymer/layered silicate nanocomposites are of three different types: (1) intercalated nanocomposites, in which insertion of polymer chains into the layered silicate structure occurs in a crystallographically regular fashion, regardless of polymer to layered silicate ratio, with a repeat distance of few nanometer; (2) flocculated nanocomposites, in which intercalated and stacked silicate layers are sometimes flocculated due to the hydroxylated edge–edge interactions between the silicate layers; (3) exfoliated nanocomposites, in which individual silicate layers are uniformly distributed in the polymer matrix by average distances that totally depend on the layered silicate loading. This new family of composite materials frequently exhibits remarkable improvements in its material properties when compared with those of virgin PLA. Improved properties can include a high storage modulus both in the solid and melt states, increased flexural properties, a decrease in gas permeability, increased heat distortion temperature, an increase in the rate of biodegradability of pure PLA, and so forth.

Illustration of the biodegradability of PLA and various nanocomposites.  相似文献   

734.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.  相似文献   
735.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.  相似文献   
736.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.  相似文献   
737.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.  相似文献   
738.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.  相似文献   
739.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.  相似文献   
740.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号