全文获取类型
收费全文 | 89篇 |
免费 | 5篇 |
国内免费 | 4篇 |
专业分类
化学 | 78篇 |
晶体学 | 3篇 |
物理学 | 17篇 |
出版年
2024年 | 1篇 |
2023年 | 3篇 |
2021年 | 1篇 |
2020年 | 4篇 |
2019年 | 6篇 |
2018年 | 4篇 |
2017年 | 3篇 |
2016年 | 3篇 |
2015年 | 2篇 |
2014年 | 6篇 |
2013年 | 6篇 |
2012年 | 5篇 |
2011年 | 1篇 |
2010年 | 4篇 |
2009年 | 3篇 |
2008年 | 3篇 |
2007年 | 5篇 |
2006年 | 1篇 |
2005年 | 7篇 |
2004年 | 5篇 |
2003年 | 6篇 |
2002年 | 2篇 |
2000年 | 3篇 |
1999年 | 2篇 |
1997年 | 2篇 |
1996年 | 3篇 |
1994年 | 2篇 |
1993年 | 2篇 |
1992年 | 1篇 |
1980年 | 1篇 |
1978年 | 1篇 |
排序方式: 共有98条查询结果,搜索用时 0 毫秒
51.
Ryszard B. Nazarski 《Journal of Physical Organic Chemistry》2007,20(6):422-430
The study of an isomeric A / B mixture of the title oxime 1 , by photolytic or thermal E,Z‐isomerization and NMR measurement including 1H{1H}‐NOE difference spectra, led to assignment of the E configuration to its predominating form A . The 1H/13C data were interpreted in terms of steric overcrowding of both forms, especially of the thermolabile photoproduct B . Four classical (empirical) NMR methods of elucidating the oxime geometry were critically tested on these results. Unexpected vapor‐phase photoconversion A → B in the window glass‐filtered solar UV and spectroscopic findings on their protonated states were discussed, as well. The kinetically controlled formation of the N‐protonated species (Z)‐ 5 + was proved experimentally. In addition, some 1H NMR assignments reported for structurally similar systems were rationalized ( 3 and 4 ) or revised ( 1 and 7–9 ) with the GIAO‐DFT(B3LYP) and/or GIAO‐HF calculational results. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
52.
V. A. Afanasieva L. A. Glinskaya R. F. Klevtsova I. V. Mironov 《Journal of Structural Chemistry》2005,46(5):876-882
Protonation equilibrium has been studied for the acyclic gold(III) tetraaza metallocomplex [AuB]2+ [B = N, N′-bis(2-aminoethyl)-2,4-pentanediiminato(1−)] in aqueous solution. The synthetic procedure is described. The crystal
and molecular structure of the protonated form of the [AuHB](H5O2)(ClO4)4 complex has been determined. Monoclinic crystals with unit cell dimensions a = 11.964(2) Å, b = 13.789(3) Å, c = 15.496(3) Å, β = 109.00(3)°, V = 2417.1(8) Å3, Z = 4, ρcalc = 2.243 g/cm3, space group P21/n. The structure is built of nearly planar [Au(C9H20N4)]3+ complex cations, (H5O2)+ cations, and [ClO4]− anions. The gold atom coordinates four nitrogen atoms of the ligand, forming a square plane. The six-membered chelate ring
of the ligand is protonated at the central β-carbon atom and contains imine C=N bonds. The oxygen atoms of the perchlorate
ions are hydrogen bonded to the (H5O2)+ dihydroxonium ion and to the nitrogen atoms of the NH2 groups of the [AuHB]3+ cation.
Original Russian Text Copyright ? 2005 by V. A. Afanasieva, L. A. Glinskaya, R. F. Klevtsova, and I. V. Mironov
__________
Translated from Zhurnal Strukturnoi Khimii, Vol. 46, No. 5, pp. 909–915, September–October, 2005. 相似文献
53.
利用多光子电离技术结合飞行时间质谱仪对甲醇/水混合团簇进行了研究.在脉冲激光波长为355 nm条件下观测到团簇离子.主要的电离产物为质子化的(CH3OH)n(H2O)H+(n=l-13)混合团簇离子与(CH3OH)nH+团簇离子,经分析(CH3OH)1o(H2O) H+和(CH3OH)3H+为幻数结构.甲醇水混合团簇电离后团簇离子发生内部质子化转移反应是形成质子化团簇离子的主要原因.不同尺寸团簇离子信号强度随电离激光光强变化的光强指数曲线显示,团簇均发生四光子电离过程. 相似文献
54.
55.
《Journal of mass spectrometry : JMS》2018,53(8):700-704
A new fragmentation process was proposed to interpret the characteristic product ion at m/z 130 of protonated arginine. The α‐amino group was dissociated from protonated arginine and then combined with the (M + H‐NH3) fragment to form an ion‐neutral complex which further generated a hydroxyl‐amino exchange intermediate compound through an ion‐molecule reaction. This intermediate compound was synthesized from argininamide through a diazo reaction, and then the reaction mixture was analyzed using liquid chromatography combined with mass spectrometry (LC‐MS). The collision‐induced dissociation experiments under the same conditions revealed that this intermediate compound produced the characteristic product ion at m/z 130 as well as protonated arginine, and in addition, density functional theory calculations were performed to confirm simultaneous loss of NH3 and CO from this intermediate to give the m/z 130 ion. 相似文献
56.
《Journal of mass spectrometry : JMS》2017,52(10):638-642
We report the observation of a new physical phenomenon of the addition of 2 hydrogen atoms to molecular ions thus forming [M + 2H]+ ions. We demonstrate such second hydrogen atom abstraction onto the molecular ions of pentaerythritol and trinitrotoluene (TNT). We used both gas chromatography mass spectrometry (GC‐MS) with supersonic molecular beam (SMB) with methanol added into its make‐up gas and electron ionization (EI) liquid chromatography mass spectrometry (LC‐MS) with SMB with methanol as the LC solvent. We found that the formation of methanol clusters resulted upon EI in the formation of dominant protonated pentaerythritol ion at m/z = 137 plus about 70% relative abundance of pentaerythritol molecular ion with 2 additional hydrogen atoms at m/z = 138 which is well above the 5.7% natural C13 isotope abundance of protonated pentaerythritol. Similarly, we found an abundant protonated TNT ion at m/z = 228 and a similar abundance of TNT molecular ion with 2 additional hydrogen atoms at m/z = 229. Upon the use of deuterated methanol (CD3OD) as the solvent, we observed an abundant m/z = 231 (M + 2D)+ of TNT with 2 deuterium atoms. We found such abundant second hydrogen atom abstraction with butylglycolate and at low abundances in dioctylphthalate, Vitamin K3, phenazine, and RDX. At this time, we are unable to report the magnitude and frequency of occurrence of this phenomenon in standard electrospray LC‐MS. This observation could have important implications on the provision of elemental formula from mass spectra that are involved with protonated molecules. Accordingly, while accurate mass measurements can serve for the generation of elemental formula, their further support and improvement via isotope abundance analysis are questionable. Consequently, if a given compound can be analyzed by both GC‐MS and LC‐MS, its GC‐MS analysis can be superior for the provision of accurate elemental formulae if its EI mass spectrum exhibits abundant molecular ions such as with GC‐MS with SMB (also known as cold EI). 相似文献
57.
Introduction Molecules containing different kinds of metal ions play an important role in molecular magnetism.1-3 So considerable attention has been paid to synthesizing heteronuclear complexes.1-4 As a potential bridging ligand, thiocyanate can coordinate to a harder metal center and softer ones with N and S atoms respectively. The complexes of thiocyanate and representative hard acidFe(III) ions usually have a six-coordinate octahe-dral structure such as [Fe(SCN)n]3-n and (Bu4N)4[Ag2-F… 相似文献
58.
四吡啶基卟啉质子化结构变化的理论研究 总被引:4,自引:0,他引:4
为考察m-吡啶基对质子化卟啉结构的影响,用半经验的AM1MO方法,并进行合理的对称性限制,计算了一类重要的卟啉衍生物---四吡啶基卟啉(TPyPH~2)及其质子化二酸(TP~yPH~4^2^+)的构型。通过结构分析,电荷布居分析和前沿轨道分析,讨论了质子化过程中的构型变化以及这种变化对分子堆积可能带来的影响。 相似文献
59.
用多光子电离技术结合飞行时间质谱仪对氨与甲醇混合团簇进行了研究.在脉冲激光波长分别为266nm,355nm和532nm条件下,仅在355nm作用下观测到团簇离子.主要的电离产物为质子化的(CH3OH)n(NH3)mH (n=0~6,m=0~4)混合团簇离子,且各个序列的离子强度随m的增大而减小.经分析,氨与甲醇混合团簇电离后团簇离子发生内部质子化转移反应是形成质子化团簇离子的主要原因.不同尺寸团簇离子信号强度随电离激光光强变化的光强指数曲线显示,团簇均发生四光子电离过程.应用量化计算,构造了质量数较小的几个团簇离子的可能的空间几何构型,发现二元团簇离子(CH3OH)n(NH3)mH 是以NH4 作为内核离子,再通过氢键与其它分子组合而构成团簇离子. 相似文献
60.
The geometric parameters of the isomers HN2O+, HPNO+, and HP2O+ were calculated by the nonempirical SCF/3-21G* method and their relative energies were determined with consideration of the electronic correlation in the MP3/DEHD + PS approximation. According to the calculations, protonation of N2O, PNO, and P2O molecules should preferably take place at the oxygen atom. Isomers with a quasilinear NNO and PNO backbone are most advantageous in HN2O+ and HPNO+, and cyclic isomers are 60 and 30 kcal/mole less stable, respectively. On the contrary, the cyclic form is more stable for HPO
2
+
(by 10 kcal/mole). The bond at the attacked atom usually weakens (breaks) and the neighboring (opposite) bonds are strengthened in protonation. Protonation of P2O stabilizes the cyclic isomer by 15 kcal/mole more strongly than the "open" isomer, resulting in inversion of their position on the energy scale. In the case of N2O and PNO, the relative position of the cyclic and basic isomers virtually does not change, but the linear NPO isomer is destabliized. The stability of the cyclic isomers in comparison to the "open" isomers increases on substitution of N atoms by P atoms in both molecules of N2O, PNO, and P2O and in their ions HN2O+, HPNO+, and HP2O+. This tendency probably holds in subsequent transition to As and Sb atoms.Institute of New Chemical Problems, Russian Academy of Sciences, 142432 Chernogolovka. Translated from Izvestiya Akademii Nauk, Seriya Khimicheskaya, No. 1, pp. 126–134, January, 1992. 相似文献