首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7039篇
  免费   519篇
  国内免费   997篇
化学   7691篇
晶体学   16篇
力学   7篇
综合类   30篇
数学   260篇
物理学   551篇
  2024年   8篇
  2023年   62篇
  2022年   131篇
  2021年   162篇
  2020年   298篇
  2019年   246篇
  2018年   186篇
  2017年   184篇
  2016年   294篇
  2015年   259篇
  2014年   270篇
  2013年   638篇
  2012年   378篇
  2011年   408篇
  2010年   366篇
  2009年   397篇
  2008年   498篇
  2007年   476篇
  2006年   463篇
  2005年   427篇
  2004年   429篇
  2003年   351篇
  2002年   295篇
  2001年   207篇
  2000年   178篇
  1999年   141篇
  1998年   137篇
  1997年   114篇
  1996年   99篇
  1995年   78篇
  1994年   83篇
  1993年   83篇
  1992年   60篇
  1991年   39篇
  1990年   30篇
  1989年   18篇
  1988年   17篇
  1987年   7篇
  1986年   10篇
  1985年   4篇
  1984年   6篇
  1983年   5篇
  1982年   4篇
  1981年   2篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1959年   1篇
排序方式: 共有8555条查询结果,搜索用时 15 毫秒
41.
In this contribution, we demonstrate a new effective methodology for constructing highly efficient and durable poly(p‐phenyleneethynylene) (PPE) containing emissive material with nonaggregating and hole‐facilitating properties through the introduction of hole‐transporting blocks into the PPE system as the grafting coils as well as building the energy donor–acceptor architecture between the grafting coils and the PPE backbone. Poly(2‐(carbazol‐9‐yl)ethyl methacrylate) (PCzEMA), herein, is chosen as the hole‐transporting blocks, and incorporated into the PPE system as the grafting coils via atom transfer radical polymerization. The chemical structure of the resultant copolymer, PPE‐g‐PCzEMA, was characterized by NMR and gel permeation chromatography, showing that the desirable copolymer was obtained with the narrow polydispersity. The increased thermal stability of PPE‐g‐PCzEMA was confirmed by thermogravimetric analysis and differential scanning calorimetry along with its macroinitiator. The optoelectronic properties of this copolymer were studied in detail by ultraviolet‐visible absorption, photoluminescence emission and excitation spectra, and cyclic voltammogram (CV). The results indicate that PPE‐g‐PCzEMA exhibits the solid‐state luminescent property dominated by individual lumophores, and also the energy transfer process from the PCzEMA blocks to the PPE backbone with a relatively higher energy transfer efficiency in the solid‐state compared to that of the solution state. Additionally, the hole‐injection property is greatly facilitated due to the presence of PCzEMA, as confirmed by CV profiles. All these data indicate that PPE‐g‐PCzEMA is a good candidate for use in optoelectronic devices. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3776–3787, 2007  相似文献   
42.
Functional spontaneous gradient copolymers of allyl methacrylate (A) and butyl acrylate (B) were synthesized via atom transfer radical polymerization. The copolymerization reactions were carried out in toluene solutions at 100 °C with methyl 2‐bromopropionate as the initiator and copper bromide with N,N,N′,N″,N″‐pentamethyldiethylenetriamine as the catalyst system. Different aspects of the statistical reaction copolymerizations, such as the kinetic behavior, crosslinking density, and gel fraction, were studied. The gel data were compared with Flory's gelation theory, and the sol fractions of the synthesized copolymers were characterized by size exclusion chromatography and nuclear magnetic resonance spectroscopy. The copolymer composition, demonstrating the gradient character of the copolymers, and the microstructure were analyzed. The experimental data agreed well with data calculated with the Mayo–Lewis terminal model and Bernoullian statistics, with monomer reactivity ratios of 2.58 ± 0.37 and 0.51 ± 0.05 for A and B, respectively, an isotacticity parameter for A of 0.24, and a coisotacticity parameter of 0.33. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5304–5315, 2006  相似文献   
43.
The radical terpolymerization of 8‐bromo‐1H,1H,2H‐perfluorooct‐1‐ene with vinylidene fluoride (VDF) and perfluoro(4‐methyl‐3,6‐dioxaoct‐7‐ene) sulfonyl fluoride is presented. Changing the feed compositions of these three fluorinated comonomers enabled us to obtain different random‐type poly[vinylidene fluoride‐ter‐perfluoro(4‐methyl‐3,6‐dioxaoct‐7‐ene) sulfonyl fluoride‐ter‐8‐bromo‐1H,1H,2H‐perfluorooct‐1‐ene] terpolymers containing various sulfonyl fluoride and brominated side groups. Yields higher than 70% were reached in all cases. The hydrolysis of the sulfonyl fluoride group into the ? SO3Li function in the presence of lithium carbonate was quantitatively achieved without the content of VDF being affected, and so dehydrofluorination of the VDF base unit was avoided. These original terpolymers were then crosslinked via dangling bromine atoms in the presence of a peroxide/triallyl isocyanurate system, which produced films insoluble in organic solvents such as acetone and dimethylformamide (which totally dissolved uncured terpolymers). The acidification of ? SO3Li into the ? SO3H function enabled protonic membranes to be obtained. The thermal stabilities of the crosslinked materials were higher than those of the uncured terpolymers, and their electrochemical performances were investigated. According to the contents of the sulfonic acid side functions, the ion‐exchange capacities ranged from 0.6 to 1.5 mequiv of H+/g, whereas the water uptake and conductivities ranged from 5–26% (±11%) and from 0.5 to 6.0 mS/cm, respectively. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4566–4578, 2006  相似文献   
44.
We report the stereocontrol of diene polymers by the topochemical polymerization of alkoxy-substituted benzyl muconates in the solid state. A monomer stacking structure is controlled by the weak intermolecular interactions in the monomer crystals, depending on the structure and position of the alkoxy-substituent. The translational and alternating types of molecular stacking structures in a column provide diisotactic and disyndiotactic polymers, respectively, by the solid-state polymerization under UV and γ-ray irradiation. On the other hand, the meso and racemo structures of the resulting polymers are determined by the molecular symmetry of the used muconate monomers. The various substituted benzyl ester polymers are transformed into the same ethyl ester polymers with the four types of tacticities. The structure and crystallization behavior of the substituted benzyl ester polymers as well as the ethyl ester polymers have been revealed in detail. We clarify the effects of the tacticity on the crystallization property of the stereoregular polymuconates. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4952–4965, 2006  相似文献   
45.
46.
This paper aims at reporting on the synthesis of a heterograft copolymer by combining the “grafting onto” process based on atom transfer radical addition (ATRA) and the “grafting from” process by atom transfer radical polymerization (ATRP). The statistical copolymerization of ε‐caprolactone (εCL) and α‐chloro‐ε‐caprolactone (αClεCL) was initiated by 2,2‐dibutyl‐2‐stanna‐1,3‐dioxepane (DSDOP), followed by ATRA of parts of the chlorinated units of poly(αClεCL‐co‐εCL) on the terminal double bond of α‐MeO,ω‐CH2?CH? CH2? CO2‐poly(ethylene oxide) (PEO). The amphiphilic poly(εCL‐g‐EO) graft copolymer collected at this stage forms micelles as supported by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The unreacted pendant chloro groups of poly(εCL‐g‐EO) were used to initiate the ATRP of styrene with formation of copolymer with two populations of randomly distributed grafts, that is PEO and polystyrene. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6015–6024, 2006  相似文献   
47.
New water‐soluble methacrylate polymers with pendant quaternary ammonium (QA) groups were synthesized and used as antibacterial materials. The polymers with pendant QA groups were obtained by the reaction of the alkyl halide groups of a previously synthesized functional methacrylate homopolymer with various tertiary alkyl amines containing 12‐, 14‐, or 16‐carbon alkyl chains. The structures of the functional polymer and the polymers with QA groups were confirmed with Fourier transform infrared and 1H and 13C NMR. The degree of conversion of alkyl halides to QA sites in each polymer was determined by 1H NMR to be over 90% in all cases. The number‐average molecular weight and polydispersity of the functional polymer were determined by size exclusion chromatography to be 32,500 g/mol and 2.25, respectively. All polymers were thermally stable up to 180 °C according to thermogravimetric analysis. The antibacterial activities of the polymers with pendant QA groups against Staphylococcus aureus and Escherichia coli were determined with broth‐dilution and spread‐plate methods. All the polymers showed excellent antibacterial activities in the range of 32–256 μg/mL. The antibacterial activity against S. aureus increased with an increase in the alkyl chain length for the ammonium groups, whereas the antibacterial activity against E. coli decreased with increasing alkyl chain length. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5965–5973, 2006  相似文献   
48.
Copper‐catalyzed controlled/living radical polymerization (LRP) of styrene (St) was conducted using the silica gel‐supported CuCl2/N,N,N′,N′,N″‐pentamethyldiethylenetriamine (SG‐CuCl2/PMDETA) complex as catalyst at 110 °C in the presence of a definite amount of air. This novel approach is based on in situ generation and regeneration of Cu(I) via electron transfer reaction between phenols and Cu(II). Sodium phenoxide or p‐methoxyphenol was used as a reducing agent of Cu(II) complexes in LRP. The number–average molecular weight, Mn,GPC, increases linearly with monomer conversion and agrees well with the theoretical values up to 85% conversion The molecular weight distribution, Mw/Mn, decreases as the conversion increases and reaches values below 1.2. The catalyst was recovered in aerobic condition and reused in copper‐catalyzed LRP of St. For the second run, the number–average molecular weights increased with monomer conversion and the polydispersities decreased as the polymerization proceeded and reached to the value <1.3 at 81% conversion. The recycled catalyst retained 90% of its original activity in the subsequent polymerization. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 77–87, 2006  相似文献   
49.
The reverse atom‐transfer radical polymerization (RATRP) technique using CuCl2/2,2′‐bipyridine (bipy) complex as a catalyst was applied to the living radical polymerization of acrylonitrile (AN). A hexasubstituted ethane thermal iniferter, diethyl 2,3‐dicyano‐2,3‐diphenylsuccinate (DCDPS), was firstly used as the initiator in this copper‐based RATRP initiation system. A CuCl2 to bipy ratio of 0.5 not only gives the best control of molecular weight and its distribution, but also provides rather rapid reaction rate. The rate of polymerization increases with increasing the polymerization temperature, and the apparent activation energy was calculated to be 57.4 kJ mol?1. Because the polymers obtained were end‐functionalized by chlorine atoms, they were used as macroinitiators to proceed the chain extension polymerization in the presence of CuCl/bipy catalyst system via a conventional ATRP process. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 226–231, 2006  相似文献   
50.
Nitroxide‐mediated radical polymerization (NMRP) of 2‐(dimethylamino)ethyl acrylate (DMAEA) was carried out at 100–120 °C, initiated by MONAMS, an alkoxyamine based on Ntert‐butyl‐N‐(1‐diethyl phosphono‐2,2‐dimethylpropyl)nitroxide, SG1. Controlled polymerization can be achieved by the addition of free SG1 (the initial molar ratio of SG1 to MONAMS ranged from 0.06 to 0.12), giving a linear first‐order kinetic plot up to 55–70% conversion depending on the reaction conditions. The molecular weights show a near linear increase with conversion; however, they deviate to some extent with theoretical values. SG1‐mediated polymerization of DMAEA at 112 °C is also controlled in organic solvents (N,N‐dimethylformide, anisole, xylene). Polymerization rate increases with increasing solvent polarity. Chain transfer to polymer produces ~1 mol % branches in bulk and 1.2–1.9 mol % in organic solvents, typical of those for acrylates. From poly(styrene) (pS) and poly(n‐butyl acrylate) (pBA) macroinitiators, amphiphilic di‐ and triblock copolymers p(S‐b‐DMAEA), p(DMAEA‐b‐S‐b‐DMAEA), p(BA‐b‐DMAEA), and p(DMAEA‐b‐BA‐b‐DMAEA) were synthesized via NMRP at 110 °C. Polymers were characterized by GPC, NMR, surface tension measurements, and DSC. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 414–426, 2006  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号