首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   364篇
  免费   47篇
  国内免费   111篇
化学   367篇
晶体学   58篇
力学   16篇
综合类   4篇
物理学   77篇
  2023年   3篇
  2022年   14篇
  2021年   17篇
  2020年   11篇
  2019年   10篇
  2018年   11篇
  2017年   24篇
  2016年   35篇
  2015年   15篇
  2014年   22篇
  2013年   47篇
  2012年   26篇
  2011年   32篇
  2010年   18篇
  2009年   42篇
  2008年   24篇
  2007年   27篇
  2006年   26篇
  2005年   23篇
  2004年   18篇
  2003年   22篇
  2002年   10篇
  2001年   11篇
  2000年   7篇
  1999年   5篇
  1998年   4篇
  1997年   6篇
  1996年   5篇
  1995年   3篇
  1993年   2篇
  1992年   1篇
  1980年   1篇
排序方式: 共有522条查询结果,搜索用时 15 毫秒
11.
12.
Isotactic polypropylene (PP) composites filled with hydroxyapatite nanorods (nHAs) were fabricated using a melt compounding process. The effects of nHA additions on the structure, thermal, and mechanical properties as well as bioactivity of PP were investigated. Wide-angle X-ray diffraction and differential scanning calorimetry results showed that PP crystallized exclusively in the α-form when adding nHAs. Dynamic mechanical analysis showed that nHAs enhanced the storage modulus of PP. Mechanical measurements showed that nHAs stiffened and reinforced PP but reduced its tensile ductility and impact strength considerably. Furthermore, the PP/nHA nanocomposites were found to exhibit excellent bioactivity upon immersion in a simulated body fluid solution. This was attributed to the formation of apatite mineral crystals on the nanocomposite surfaces as revealed by scanning electron microscopy and energy dispersive X-ray analysis.  相似文献   
13.
Nanorod‐assembled FHA microspheres with different F contents were for the first time prepared through a facile one‐step hydrothermal method. The effect of the reaction time and pH value of reaction solutions on the FHA morphology was investigated to elucidate the self‐assembly process of FHA microspheres. The results showed pH values had significant effect on the morphology of the formed FHA crystals, which were self‐assembled into sphere‐like sturctures at high pH conditions and rod‐like structures at low pH values. The results suggested that formation of FHA crystals with varied morphology may be directly related to Ca2+ release kinetics from EDTA‐Ca‐Na2 at different pH conditions. Furthermore, it was found that the chemical stability of FHA microspheres was dependent on the F content in the materials, and high F contents in FHA microspheres lead to improved chemical stability. These results suggest that the prepared self‐assembled FHA microspheres may be used for teeth substitution materials due to their unique hierarchical structures and controllable chemical stability.  相似文献   
14.
《化学:亚洲杂志》2017,12(6):655-664
Highly flexible hydroxyapatite/collagen (HAP/Col) composite membranes are regarded to be significant for guided bone regeneration application owing to their similar chemical composition to that of natural bone, excellent bioactivity and good osteoconductivity. However, the mechanical strength of the HAP/Col composite membranes is usually weak, which leads to difficult surgical operations and low mechanical stability during the bone healing process. Herein, highly flexible ultralong hydroxyapatite nanowires/collagen (UHANWs/Col) composite biopaper sheets with weight fractions of UHANWs ranging from 0 to 100 % are facilely synthesized. The UHANWs are able to weave with each other to construct a three‐dimensional fabric structure in the collagen matrix, providing a strong interaction between UHANWs and an intermolecular force between UHANWs and the collagen matrix. The as‐prepared UHANWs/Col composite biopaper exhibits improved mechanical properties and high flexibility. More importantly, the as‐prepared highly flexible 70 wt % UHANWs/Col composite biopaper exhibits an excellent cytocompatibility and outstanding cellular attachment performance as compared with the pure collagen and 70 wt % HAP nanorods/Col membranes. In consideration of its superior mechanical properties and outstanding cellular attachment performance, the as‐prepared UHANWs/Col composite biopaper is promising for applications in various biomedical fields such as guided bone regeneration.  相似文献   
15.
Various composites have been proposed in the literature for the fabrication of bioscaffolds for bone tissue engineering. These materials include poly(ε‐caprolactone) (PCL) with hydroxyapatite (HA). Since the biomaterial acts as the medium that transfers mechanical signals from the body to the cells, the fundamental properties of the biomaterials should be characterized. Furthermore, in order to control the processing of these materials into scaffolds, the characterization of the fundamental properties is also necessary. In this study, the physical, thermal, mechanical, and viscoelastic properties of the PCL‐HA micro‐ and nano‐composites were characterized. Although the addition of filler particles increased the compressive modulus by up to 450%, the thermal and viscoelastic properties were unaffected. Furthermore, although the presence of water plasticized the polymer, the viscoelastic behavior was only minimally affected. Testing the composites under various conditions showed that the addition of HA can strengthen PCL without changing its viscoelastic response. The results found in this study can be used to further understand and approximate the time‐dependent behavior of scaffolds for bone tissue engineering. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
16.
17.
以低温沉淀方法制备的羟基磷灰石(HAp)为载体,采用浸渍法制备了一系列不同Ni含量的Ni/HAp催化剂,并采用BET、H2-TPR、XRD、SEM、FT-IR、TEM和TG-DTA技术对催化剂进行了表征。结果表明,NiO含量为13%的催化剂表现出最好的催化甲烷二氧化碳重整制合成气活性,在850℃、空速3.6×104mL/(h·gcat)的反应条件下,甲烷和二氧化碳的转化率在10 h内分别稳定在72%和83%。这主要归因于催化剂中金属和载体之间的强相互作用。虽然反应后的催化剂表面有少量的积炭,但这些积炭多以丝状炭存在,并不会影响催化剂的活性和稳定性。  相似文献   
18.
19.
Hydroxyapatite (HAP), a well‐known member of the calcium phosphate family, is the major inorganic component of bones and teeth in vertebrates. The highly ordered arrays of HAP structures are of great significance for hard tissue repair and for understanding the formation mechanisms of bones and teeth. However, the synthesis of highly ordered HAP structure arrays remains a great challenge. In this work, inspired by the ordered structure of tooth enamel, we have successfully synthesized three‐dimensional bulk materials with large sizes (millimeter scale) that are made of highly ordered arrays of ultralong HAP microtubes (HOAUHMs) by solvothermal transformation of calcium oleate precursor. The core–shell‐structured oblate sphere consists of a core that is composed of HAP nanorods and a shell that consists of highly ordered HAP microtube arrays. The prepared HOAUHMs are large: 6.0 mm in diameter and up to 1.4 mm in thickness. With increasing solvothermal reaction time, the HOAUHMs grow larger; the microtubes become more uniform and more ordered. This work provides a new synthetic method for synthesizing highly ordered arrays of uniform HAP ultralong microtubes that are promising for biomedical applications.  相似文献   
20.
A highly flexible and nonflammable inorganic hydroxyapatite (HAP) paper made from HAP ultralong nanowires is reported. The paper can be used for printing and writing and is promising for the permanent and safe storage of information, such as archives and important documents. The HAP paper is also an excellent and recyclable adsorbent for organic pollutants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号