首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   271篇
  免费   202篇
  国内免费   135篇
化学   309篇
晶体学   27篇
力学   2篇
综合类   2篇
物理学   268篇
  2024年   7篇
  2023年   22篇
  2022年   60篇
  2021年   39篇
  2020年   40篇
  2019年   23篇
  2018年   28篇
  2017年   32篇
  2016年   33篇
  2015年   25篇
  2014年   46篇
  2013年   65篇
  2012年   31篇
  2011年   33篇
  2010年   24篇
  2009年   14篇
  2008年   12篇
  2007年   20篇
  2006年   8篇
  2005年   4篇
  2004年   9篇
  2003年   4篇
  2002年   3篇
  2001年   3篇
  2000年   2篇
  1998年   6篇
  1997年   2篇
  1995年   2篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1985年   6篇
排序方式: 共有608条查询结果,搜索用时 31 毫秒
41.
通过将BiOBr纳米片与g-C3N4复合,然后原位还原,合成了具有纳米花状结构的三元异质结光催化剂g-C3N4/Bi/BiOBr.对g-C3N4/Bi/BiOBr的结构、形貌、元素价态和光学性能等进行了表征和研究.评估了g-C3N4/Bi/BiOBr对气体甲醛的光催化降解活性. g-C3N4/Bi/BiOBr在可见光照射下降解甲醛的活性与g-C3N4、 BiOBr单体和g-C3N4/BiOBr二元复合物相比显著提高. 20%-g-C3N4/Bi/BiOBr复合物可以在60 min内(λ> 400 nm)降解80%的气态甲醛(初始浓度0.16 mg·L-1).  相似文献   
42.
采用水热法制备了一系列Bi2WO6/Zn O异质结光催化剂,并对其进行X射线衍射(XRD)、紫外-可见光谱(UV-Vis DRS)、扫描电镜(SEM)、光电子能谱(EDS)等手段对其结构性质进行了表征。在含酚废水的液相反应体系中,研究了异质结Bi2WO6/Zn O复合光催化剂光催化降解苯酚的性能。结果表明,Bi2WO6/Zn O异质结的形成可以有效的抑制光生电子和空穴对的结合,使其光催化活性明显优于纯的Zn O和Bi2WO6;另外,异质结型Bi2WO6/Zn O复合光催化剂的表面OH·自由基更有利于光催化活性的提高。当Bi2WO6复合量为4wt%时,异质结Bi2WO6/Zn O复合光催化剂光催化降解苯酚的效果最佳。  相似文献   
43.
刘瑞远  孙宝全 《化学学报》2015,73(3):225-236
有机/无机杂化太阳能电池既可以兼容无机材料的高稳定性, 高载流子迁移率和成熟的制备工艺, 又可以利用有机材料分子结构的可塑性, 调节光谱吸收以及光学带隙, 以及简便的溶液制作过程, 具有取得高效率低成本太阳能电池的巨大潜力. 硅和有机物在低温下形成的异质结光伏电池吸引了广泛的研究, 目前最高光电转换效率已经达到13.8%. 而采用硅纳米线等纳米结构之后使在几十微米的低纯硅上制备高效太阳能电池成为可能, 柔性硅基底的杂化太阳能电池效率已经超过12%. 本文首先介绍了硅基杂化太阳能电池的结构、工作机理和使用的有机材料, 按硅的结构分为平面硅基和微纳结构硅基杂化太阳能电池, 重点概述了该类电池最近几年的发展状况, 分析了硅的结构、有机材料和制备工艺对器件性能的影响. 最后对众多研究方法进行了归纳总结, 对存在的问题和解决策略提出了展望.  相似文献   
44.
采用自组装和化学沉淀法分别制得两种可见光驱动复合材料石墨相氮化碳/碳酸氧铋(g-C_3N_4/Bi_2O_2CO_3).采用X射线衍射光谱(XRD),紫外可见光谱、扫描电镜(SEM)、N_2吸附、电化学阻抗谱(EIS)和X射线光电子能谱(XPS)等分析手段对制备的催化剂进行了表征.结果表明,制备方法对纳米复合材料的晶相、形态及光学性能没有影响,但是影响g-C_3N_4和Bi_2O_2CO_3之间的相互作用力,导致光生电子-空穴对的分离速率存在显著差异.以可见光驱动苯酚和罗丹明B的降解实验为探针反应检测催化剂的光催化性能.实验结果表明自组装法得到的异质结催化剂中相互作用力更强,催化效果最高.O_2-是罗丹明B降解反应的主要活性物种,染料的光敏化、Bi_2O_2CO_3与g-C_3N_4综合效应,导致光生载流子电荷分离效率更高.  相似文献   
45.
刘迪  刘骞  王永刚  朱永法 《化学进展》2018,30(6):703-709
Bi基半导体光催化剂具备独特的电子能带结构、可调节与可拓展的光谱响应范围、低毒及组成元素供给丰富等优点,使其成为高效、可实用型光催化剂的重要候选者。而Bi基非金属氧酸盐作为新型半导体光催化剂,其非金属氧酸根的表面修饰作用及高结晶性使其呈现出更加独特的光催化活性。本文简要介绍了Bi基半导体光催化剂的结构特性及近几年的研究进展,重点综述了Bi基非金属氧酸盐的一员--Bi2SiO5及其制备、异质结的构建和电子能带结构的研究进展,并对其今后的研究与应用方向作了进一步的展望。  相似文献   
46.
采用水热法成功制备了MoS2/WO3复合半导体光催化剂,分别通过SEM、TEM、EDS、XRD、Raman和DRS对催化剂的形貌,组成及结构进行表征,并用BET模型计算比表面积。对比发现球状MoS2/WO3对罗丹明B(RhB)的光降解效率明显高于纯WO3、片状MoS2/WO3复合半导体。针对球状MoS2/WO3复合半导体,分别研究了MoS2不同负载量(0.5%,1%,2%,5%,10%)对RhB光催化降解性能的影响,结果表明MoS2含量为2%时催化效果最佳。同时,研究了溶液的pH值(pH=1,3,6,7,11)对光催化降解反应活性的影响,结果显示pH=6时降解率最高。当催化剂量增加到1 g·L-1时,30min后RhB降解率达到96.6%。球状MoS2/WO3的瞬态光电流为0.050 6 mA·cm-2,比纯WO3提高了2.4倍。经过5次循环实验,球状MoS2/WO3复合半导体催化剂仍能保持90%的高降解率。  相似文献   
47.
分别以乙二醇/去离子水为溶剂,通过溶剂热/水热法分别制备了具有不同主导晶面的BiOIO3/{110}BiOCl和BiOIO3/{001}BiOCl异质结。采用X射线衍射、扫描电子显微镜、能量色散谱和紫外可见漫反射光谱对制备的BiOIO3/BiOCl光催化剂进行了表征。在可见光照射下,通过对罗丹明 B和苯酚水溶液的光催化降解,考察了 BiOIO3/BiOCl异质结的光催化活性。结果显示25% BiOIO3/{110}BiOCl异质结具有最高的光催化效率。BiOIO3/{110}BiOCl较好的光催化性能是由于其在可见光区较强的光吸收,以及异质结结构和BiOCl所具有的(110)主导晶面有利于光生载流子的分离。超氧自由基(·O2-)和空穴(h+)是光催化过程中的主要活性物质。此外,根据实验结果探讨了光催化性能增强的机理。  相似文献   
48.
CuS/TiO2纳米管异质结阵列的制备及光电性能   总被引:1,自引:0,他引:1  
利用水热反应制备了CuS/TiO2纳米管异质结阵列,采用场发射扫描电子显微镜(FESEM)、透射电子显微镜(TEM)和X射线衍射谱(XRD)等手段表征了异质结阵列的表面形貌和晶体结构.电流-电压曲线结果表明,CuS/TiO2纳米管异质结阵列具有明显的整流效应.根据表面光电压谱和相位谱,在376~600 nm之间,CuS/TiO2纳米管异质结阵列表现为p型半导体特征,电子在表面聚集;在300~376 nm之间表现为n型半导体特征,空穴在表面聚集;在376 nm处异质结阵列的表面光伏响应为零.CuS/TiO2和CuS/ITO之间界面电场的不同导致异质结在不同波长范围内表面电荷聚集的差异.光电化学性能测试发现,以CuS/TiO2纳米管异质结阵列为光阳极组成的光化学太阳电池,在大气质量AM 1.5G,100 mW/cm2标准光强作用下具有0.4%的光电转换能力.  相似文献   
49.
采用对靶磁控溅射方法在P型晶体硅(c—Si)衬底上沉积n型富硅氮化硅(SiNx)薄膜,形成了富硅SiNx/c—Si异质结.异质结器件呈现出较高的整流比,在室温下当V=4-2V时为1.3×10^3.在正向偏压下温度依赖的J—V特性曲线可以分为三个明显不同的区域.在低偏压区载流子的输运满足欧姆传输机理,在中间偏压区的电流是由载流子的隧穿过程和复合过程共同决定的,在较高偏压区的电输运以具有指数陷阱分布的空间电荷限制电流(SCLC)传输机理为主.  相似文献   
50.
韩典荣  王璐  罗成林  朱兴凤  戴亚飞 《物理学报》2015,64(10):106102-106102
相近直径的锯齿型和扶手椅型碳纳米管可以共轴组合形成5-7碳环交替出现的柱形对称异质结. 本文利用分子动力学方法研究了直径相近且等长锯齿型和扶手椅型碳纳米管形成的(n, n)-(2n, 0)结在扭转过程中的扭矩和轴向应力随扭转角度的变化规律以及应力传递过程. 研究发现, (n, n)-(2n, 0)结扭转应变在达弹性限度内不会产生轴向应力, 该效应对基于碳纳米管扭转特性的纳米振荡器件的设计具有重要意义.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号