首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13477篇
  免费   2830篇
  国内免费   1463篇
化学   9350篇
晶体学   229篇
力学   100篇
综合类   72篇
数学   49篇
物理学   7970篇
  2024年   23篇
  2023年   113篇
  2022年   336篇
  2021年   347篇
  2020年   432篇
  2019年   358篇
  2018年   407篇
  2017年   403篇
  2016年   576篇
  2015年   584篇
  2014年   742篇
  2013年   1648篇
  2012年   844篇
  2011年   895篇
  2010年   712篇
  2009年   813篇
  2008年   848篇
  2007年   1014篇
  2006年   918篇
  2005年   766篇
  2004年   660篇
  2003年   649篇
  2002年   546篇
  2001年   463篇
  2000年   423篇
  1999年   337篇
  1998年   329篇
  1997年   274篇
  1996年   214篇
  1995年   186篇
  1994年   167篇
  1993年   151篇
  1992年   92篇
  1991年   74篇
  1990年   74篇
  1989年   54篇
  1988年   49篇
  1987年   40篇
  1986年   43篇
  1985年   30篇
  1984年   34篇
  1983年   10篇
  1982年   15篇
  1981年   20篇
  1980年   15篇
  1979年   8篇
  1978年   10篇
  1975年   6篇
  1974年   3篇
  1973年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
闪光X射线机技术在中国工程物理研究院(下称CAEP)已有三十年的发展历史在爆轰物理学和y射线辐照效应研究中发挥了重要作用。本文总结了CAEP几种类型闪光X射线机的研制概况,阐述了高压脉冲技术、场发射技术、强流束聚焦等的研究进展,并介绍几种装置的主要技术参数。闪光X射线机是研究爆轰物理过程及其它高速瞬变过程的重要工具。国防科学技术研究中,大型闪光X射线机的研制具有很大的意义。文中对开拓强流电了束新的应用领域提出了展望。  相似文献   
102.
我们对多电子束契伦柯夫自由电子激光进行了首次实验研究。280A,500kV的电子束被引入一多介质矩形谐振腔,在频率为33.4GHz处产生了1.7MW的契伦柯夫相干受激辐射。互作用效率为1.2%。  相似文献   
103.
白易灵  张秋菊  田密  崔春红 《物理学报》2013,62(12):125206-125206
用一维粒子模拟程序对功率密度在1022 W/cm2以上的超强激光驱动薄膜靶产生的相对论电子层及其经过汤姆孙散射产生的阿秒X射线进行了研究. 结果表明, 在超相对论强度范围下增大驱动激光强度, 相应减小等离子体密度及厚度可使电子层获得更高纵向动量, 使汤姆孙散射光明显向更短波长移动. 优化相关参数得到了波长为 1.168 nm的阿秒脉冲. 经过对倍频探测光方案与驱动光以及薄膜靶参数进行综合考虑和优化, 得到的X射线相干辐射波长有效减小到0.4 nm以下, 产生的光子能量达到2 keV以上. 关键词: 超相对论强度激光 阿秒X射线 相对论电子层 汤姆孙后向散射  相似文献   
104.
Waste minimization strategy was applied in the current work for synthesis of the catalysts from industrial solid waste, namely desulfurization slag. The starting slag material comprising CaCO3, Ca(OH)2, SiO2, Al2O3, Fe2O3, and TiO2 was processed by various treating agents systematically varying the synthesis parameters. A novel efficient technique – ultrasound irradiation, was applied as an additional synthesis step for intensification of the slag dissolution and crystallization of the new phases. Physico-chemical properties of the starting materials and synthesized catalysts were evaluated by several analytical techniques. Treatment of the industrial slag possessing initially poor crystal morphology and a low surface area (6 m2/g) resulted in formation of highly-crystalline catalysts with well-developed structural properties. Surface area was increased up to 49 m2/g. High basicity of the neat slag as well as materials synthesized on its basis makes possible application of these materials in the reactions requiring basic active sites. Catalytic performance of the synthesized catalysts was elucidated in the synthesis of carbonate esters by carboxymethylation of cinnamyl alcohol with dimethyl carbonate carried out at 150 °C in a batch mode. Ultrasonication of the slag had a positive effect on the catalytic activity. Synthesized catalysts while exhibiting similar selectivity to the desired product (ca. 84%), demonstrated a trend of activity increase for materials prepared using ultrasonication pretreatment. The choice of the treating agent also played an important role in the catalytic performance. The highest selectivity to the desired cinnamyl methyl carbonate (88%) together with the highest activity (TOF35 = 3.89*10−7 (mol/g*s)) was achieved over the material synthesized using 0.6 M NaOH solution as the treating agent with the ultrasound pre-treatment at 80 W for 4 h.  相似文献   
105.
The ultrasound-assisted crystallization process has promising potentials for improving process efficiency and modifying crystalline product properties. In this work, the crystallization process of fotagliptin benzoate methanol solvate (FBMS) was investigated to improve powder properties and downstream desolvation/drying performance. The direct cooling/antisolvent crystallization process was conducted and then optimized with the assistance of ultrasonic irradiation and seeding strategy. Direct cooling/antisolvent crystallization and seeding crystallization processes resulted in needle-like crystals which are undesirable for downstream processing. In contrast, the ultrasound-assisted crystallization process produced rod-like crystals and reduced the crystal size to facilitate the desolvation of FBMS. The metastable zone width (MSZW), induction time, crystal size, morphology, and process yield were studied comprehensively. The results showed that both the seeding and ultrasound-assisted crystallization process (without seeds) can improve the process yield and the ultrasound could effectively reduce the crystal size, narrow the MSZW, and shorten the induction time. Through comparing the drying dynamics of the FBMS, the small rod-shaped crystals with a mean size of 9.6 μm produced by ultrasonic irradiation can be completely desolvated within 20 h, while the desolvation time of long needle crystals with an average size of about 157 μm obtained by direct cooling/antisolvent crystallization and seeding crystallization processes is more than 80 h. Thus the crystal size and morphology were found to be the key factors affecting the desolvation kinetics and the smaller size produced by using ultrasound can benefit the intensification of the drying process. Overall, the ultrasound-assisted crystallization showed a full improvement including crystal properties and process efficiency during the preparation of fotagliptin benzoate desolvated crystals.  相似文献   
106.
The deficiency of drinking water sources has become a serious crisis for the future of the world that the photocatalytic process is one of the most favorable methods for removal of artificial dyes and poisonous organic impurities. In the present study, rapid ultrasonic treatment was performed to obtain La2Sn2O7/Graphitic carbon nitrides (LSO/CN) nanocomposites with advanced photo-catalytic performance. Broccoli extract was utilized as a natural surfactant with active surface groups to control nucleation and growth of formed crystals with the creation of spatial barriers around the cations, and finally prevent nano-product agglomeration. Changing experimental parameters in synthesis reaction in turn offers a virtuous control over the nano-products size and shape. The shape and size distribution of particles was considered via diverse characterization techniques of microscopic and spectroscopic. The photocatalytic behaviors along with a kinetic study of the nanoparticles were examined by elimination and degradation of different artificial dyes under the UV waves. Effect of particle size, weight ratio of LSO:CN, type of dye, scavenger kind, dye and catalyst loading was designated on altering proficiency of nano-catalyst function. Also, the probable mechanism of removal dye by photocatalytic function was studied.  相似文献   
107.
Gaining an in-depth understanding of the characteristics and dynamics of ultrasound (US)--generated bubbles is crucial to effectively remediate membrane fouling. The goal of present study is to conduct in-situ visualization of US-generated microbubbles in water to examine the influence of US frequency on the dynamics of microbubbles. This study utilized synchrotron in-line phase contrast imaging (In-line PCI) available at the biomedical imaging and therapy (BMIT) beamlines at the Canadian Light Source (CLS) to enhance the contrast of liquid/air interfaces at different US frequencies of 20, 28 and 40 KHz at 60 Watts. A high-speed camera was used to capture 2,000 frames per second of the bubble cavitation generated in water under the ultrasound influence. Key parameters at the polychromatic beamlines were optimized to maximize the phase contrast of gas/liquid of the microbubbles with a minimum size of 5.5 µm. ImageJ software was used to analyze the bubble characteristics and their behavior under the US exposure including the microbubble number, size, and fraction of the total area occupied by the bubbles at each US frequency. Furthermore, the bubble characteristics over the US exposure time and at different distances from the transducer were studied. The qualitative and quantitative data analyses showed that the microbubble number or size did not change over time; however, it was observed that most bubbles were created at the middle of the frames and close to the US field. The number of bubbles created under the US exposure increased with the frequency from 20 kHz to 40 kHz (about 4.6 times). However, larger bubbles were generated at 20 kHz such that the average bubble radius at 20 kHz was about 6.8 times of that at 40 kHz. Microbubble movement/traveling through water was monitored, and it was observed that the bubble velocity increased as the frequency was increased from 20 kHz to 40 kHz. The small bubbles moved faster, and the majority of them traveled upward towards the US transducer location. The growth pattern (a correlation between the mean growth ratio and the exposure time) of bubbles at 20 kHz and 60 W was obtained by tracking the oscillation of 22 representative microbubbles over the 700 ms of imaging. The mean growth ratio model was also obtained.  相似文献   
108.
The flexible Ag/TiO2/ITO/PET resistive switching memory is prepared by low-temperature sol-gel method with UV irradiation, and the simple method that combined the advantages of sol-gel method and low temperature can be applied to fabricate high-quality film. The flexible Ag/TiO2/ITO/PET memory device displays good resistive behavior, for instance, the narrow distributions of switching voltages, good cycle endurance, and long retention time. Meanwhile, the multilevel resistance states of the device can be realized by controlling the compliance current or reset voltages, showing the potential of applications in neural networks and high-density storge. In addition, flexibility of the Ag/TiO2/ITO/PET is studied, which exhibit good endurance and retention properties under bending condition. The I–V curves are replotted and fitted for analyzing the conductive mechanism of the device. The fitting results show that SCLC and Ohmic mechanism are main mechanisms of high resistance state and low resistance state respectively. The electrochemical and thermochemical modes are adopted to explain resistive switching behavior. Our results indicate the Ag/TiO2/ITO/PET memory has potential application in wearable and foldable electronics.  相似文献   
109.
Nonlinear vortical structures and soliton formation are investigated for electron temperature gradient instability in a two-electron temperature non-Maxwellian magnetoplasma. The inhomogeneity in magnetic field is also considered. A new set of nonlinear equations, using transport equations of Braginskii”s model, are formulated to study the nonlinear structures. A modified linear dispersion relation of coupled electron temperature gradient (ETG) mode and electron acoustic wave is derived. The ETG instability is found to increase with increase in ηec value that increases with sharp density gradients. The results are applied to auroral region of earth's magnetosphere and the calculated values of the nonlinear electric field of fast solitary waves are found to be in agreement with the Viking satellite observations.  相似文献   
110.
薛碧曦  郝建红  赵强  张芳  范杰清  董志伟 《强激光与粒子束》2021,33(9):093006-1-093006-7
离子通道可以有效抑制电子束在等离子体环境内传输过程中的径向扩散,已有工作研究了离子通道对电子束的影响,但离子通道建立过程和暂态特性研究则更有助于理解和利用离子通道在电子束长程传输中的作用。本文利用PIC方法对离子通道的时空分布进行二维模拟,并基于单粒子理论推导出描述离子通道振荡的解析模型,对上述两种模型的结果相互校验。上述模型的计算结果表明,在长程传输过程中,相对论电子束在等离子体内部建立的离子通道是持续周期振荡的,电子束密度、电子束初始半径以及环境等离子体密度都会对离子通道的振荡规律产生影响,针对不同的等离子体环境选择合适的电子束参数可以有效提高离子通道的稳定性,进而提升传输过程中电子束的束流质量。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号