首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1505篇
  免费   81篇
  国内免费   449篇
化学   1745篇
晶体学   18篇
力学   12篇
综合类   10篇
数学   3篇
物理学   247篇
  2024年   20篇
  2023年   27篇
  2022年   74篇
  2021年   91篇
  2020年   114篇
  2019年   50篇
  2018年   48篇
  2017年   42篇
  2016年   50篇
  2015年   43篇
  2014年   76篇
  2013年   87篇
  2012年   80篇
  2011年   97篇
  2010年   53篇
  2009年   89篇
  2008年   93篇
  2007年   113篇
  2006年   96篇
  2005年   103篇
  2004年   75篇
  2003年   66篇
  2002年   58篇
  2001年   52篇
  2000年   43篇
  1999年   39篇
  1998年   25篇
  1997年   27篇
  1996年   28篇
  1995年   26篇
  1994年   13篇
  1993年   21篇
  1992年   10篇
  1991年   13篇
  1990年   10篇
  1989年   8篇
  1988年   9篇
  1987年   7篇
  1986年   5篇
  1984年   5篇
  1981年   3篇
  1980年   12篇
  1979年   6篇
  1978年   4篇
  1977年   5篇
  1976年   3篇
  1975年   2篇
  1974年   2篇
  1973年   4篇
  1972年   4篇
排序方式: 共有2035条查询结果,搜索用时 15 毫秒
101.
固态电池以其高安全性和高能量密度而备受关注。石榴石型固体电解质(LLZO)由于具有较高的离子导电性和对锂金属的稳定性,在固态电池中具有应用前景,但陶瓷与锂金属较差的界面接触会导致高的界面阻抗和可能形成的枝晶穿透。我们利用LLZO表层独特的H+/Li+交换反应,提出了一种简便有效的金属盐类水溶液诱发策略,在电解质表面原位构建ZnO亲锂层,界面处LiZn合金化实现紧密连续的接触。引入改性层后,界面阻抗可显著降低至约10Ω·cm2,对称电池能够在0.1mA·cm-2的电流密度下实现长达1000h的长循环稳定性。匹配正极LiFePO4(LFP)或LiNi0.5Co0.2Mn0.3O2(NCM523)的准固态电池在室温下能够稳定循环100次以上。  相似文献   
102.
This present work discusses dual-blend green polymer electrolyte (GPE)–based natural polymers, composed of carboxyl methylcellulose (CMC) and chitosan (CS), created by introducing various compositions of ammonium bromide (NH4Br) as a dopant in the system. These GPEs were successfully prepared by the solution casting technique and characterized using electrical impedance spectroscopy (EIS). From EIS measurement, the highest room-temperature conductivity is 1.21 × 10?5 Scm?1 for the sample containing 20 wt.% of NH4Br. Plot of the temperature dependence of the GPEs revealed that the system obeys the Arrhenius rule and was thermally assisted. Besides that, dielectric studies were also conducted and the data were analyzed using complex permittivity, ?*, and complex electrical modulus, M*, to determine the sample with the highest conductivity value. Thus, this study confirmed non-Debye behavior in the sample.  相似文献   
103.
最近,碱性聚合物电解质膜燃料电池(APEMFC)因具有电极反应动力学快以及不依赖于贵金属铂催化剂等诸多优点而成为一个热门话题.作为其中一个关键部件,碱性聚合物电解质膜直接影响燃料电池的性能和成本.然而,迄今为止,仍然没有令人满意的碱性电解质膜材料.为此,大量研究被开展和报道.本文综述了近三年内文献中关于燃料电池碱性聚合物电解质膜的最新研究进展:包括各种各样的合成策略,构效关系,水管理以及非原位或原位稳定性测试等等.尤其是一些新的金属离子基阴离子交换膜和冠醚基阴离子交换膜首次被提及和评论.此外,还进一步预测了将来的发展趋势.  相似文献   
104.
潘笑容  连芳  关红艳  何逸 《化学通报》2014,77(8):852-759
离子液体具有蒸汽压低、热稳定性好、不易挥发、溶解能力强、环境友好、电化学稳定窗口和液程范围宽等优点,在锂离子电池领域应用前景广泛。本文按照离子液体作为电解质溶剂、与传统电解质复配或与聚合物电解质结合的应用方式,总结其对电池的安全性和热稳定性的影响,并综述了近年来离子液体在锂离子电池电解质中的应用研究进展。  相似文献   
105.
Rechargeable aqueous zinc batteries (RAZB) have been re-evaluated because of the superiority in addressing safety and cost concerns. Nonetheless, the limited lifespan arising from dendritic electrodeposition of metallic Zn hinders their further development. Herein, a metal–organic framework (MOF) was constructed as front surface layer to maintain a super-saturated electrolyte layer on the Zn anode. Raman spectroscopy indicated that the highly coordinated ion complexes migrating through the MOF channels were different from the solvation structure in bulk electrolyte. Benefiting from the unique super-saturated front surface, symmetric Zn cells survived up to 3000 hours at 0.5 mA cm−2, near 55-times that of bare Zn anodes. Moreover, aqueous MnO2–Zn batteries delivered a reversible capacity of 180.3 mAh g−1 and maintained a high capacity retention of 88.9 % after 600 cycles with MnO2 mass loading up to 4.2 mg cm−2.  相似文献   
106.
Electrolyte modulation simultaneously suppresses polysulfide the shuttle effect and lithium dendrite formation of lithium–sulfur (Li-S) batteries. However, the sluggish S redox kinetics, especially under high S loading and lean electrolyte operation, has been ignored, which dramatically limits the cycle life and energy density of practical Li-S pouch cells. Herein, we demonstrate that a rational combination of selenium doping, core–shell hollow host structure, and fluorinated ether electrolytes enables ultrastable Li stripping/plating and essentially no polysulfide shuttle as well as fast redox kinetics. Thus, high areal capacity (>4 mAh cm−2) with excellent cycle stability and Coulombic efficiency were both demonstrated in Li metal anode and thick S cathode (4.5 mg cm−2) with a low electrolyte/sulfur ratio (10 μL mg−1). This research further demonstrates a durable Li-Se/S pouch cell with high specific capacity, validating the potential practical applications.  相似文献   
107.
Lithium-ion batteries (LIBs) are widely used in cellphones, laptops, and electric cars owing to their high energy density and long operational lifetime. However, their further deployment in large-scale energy storage systems is restricted by the uneven distribution of lithium resources (~0.0017% (mass fraction, w) in the Earth's crust). Therefore, alternative energy storage systems composed of abundant elements are of urgent need. Recently, sodium-ion batteries (SIBs) have attracted significant attention and are considered to be a potential alternative for next-generation batteries owing to abundant sodium resources (~2.64% (w) of the Earth's crust), suitable potential (−2.71 V), and low cost. SIBs are similar to LIBs in terms of their physical and electrochemical properties. Previous studies have mainly focused on SIB storage materials, including hard carbon, alloys, and hexacyanoferrate, while the safety of SIBs remains largely unexplored. Similar to LIBs, the current electrolytes used in SIBs are mainly composed of flammable organic carbonate solvents (or ether solvents), sodium salts, and functional additives, which pose possible safety issues. Moreover, the chemical activity of sodium is much higher than that of lithium, leading to a higher risk of fire, thermal runaway, and explosion. To overcome this problem, herein we propose a fluorinated non-flammable electrolyte composed of 0.9 mol∙L−1 NaPF6 (sodium hexafluorophosphate) in an intermixture of di-(2, 2, 2 trifluoroethyl) carbonate (TFEC) and fluoroethylene carbonate (FEC) in a 7 : 3 ratio by volume. Its physical and electrochemical properties were studied by ionic conductivity, direct ignition, cyclic voltammetry, and charge/discharge measurements, demonstrating excellent flame-retarding ability and outstanding compatibility with sodium electrodes. The electrochemical tests showed that the Prussian blue cathode retained a capacity of 84 mAh∙g−1 over 50 cycles in the prepared electrolyte, in contrast to the rapid capacity degradation in a flammable conventional carbonate electrolyte (74 mAh∙g−1 with 57% capacity retention after 50 cycles). To test the practical application of the proposed electrolyte, a hard carbon anode was used and exhibited exceptional performance in this system. The enhancement mechanism was further verified by Fourier transform infrared (FTIR), X-ray diffraction (XRD), and scanning emission microscopy (SEM) investigations. Polycarbonate on the surface of the cathode played an important role for the studied electrolyte system. The polycarbonate may originate from FEC decomposition, which can enhance the ionic conductivity of the solid electrolyte interface (SEI) layer and reduce impedance. Hence, we believe that this proposed electrolyte may provide new opportunities for the design of robust and safe SIBs for next-generation applications.  相似文献   
108.
碱性聚电解质燃料电池(APEFC)近年来取得了可观的进展,但是在使用空气作为氧化剂工作时仍然面临着性能损失. 文献中已有多个理论试图解释性能损失的来源,但是缺乏定量化的分析. 本文根据实验发现和热力学及阳极反应的动力学分析,提出了分层的阳极碳酸化模型和方程组.模型的定量化模拟结果进一步和实验结果进行验证,提出了电池性能损失的可能原因.  相似文献   
109.
In order to improve the performance and durability of polymer electrolyte fuel cells (PEFCs), various improvements in the microstructures of cathode catalyst layers (CLs) were initiated in the early 1990s. More recent advances in CL materials are highlighted, including carbon supports for improved accessibility of Pt nanoparticles (NPs), adsorption of ionomer on the Pt surface, high-oxygen-permeability ionomers, corrosion resistance of mesoporous and microporous carbons, and conductive ceramic supports with a fused-aggregate network structure. These approaches are summarized as stepwise improvements. The influences of the support structure on the distribution of Pt NPs and ionomer are reviewed, as well as their effects on performance and durability. These approaches for carbon supports are extended to conductive ceramic supports and the unique advantages are discussed.  相似文献   
110.
Mg-metal-anode rechargeable battery (MRB) has been a promising candidate for next-generation batteries with high energy densities and high safety. The lack of high-performance cathode materials, however, retards the development of MRBs. In recent years, it has been revealed that various spinel oxides can accommodate a large amount of Mg, exhibiting relatively high potentials (2–3 V vs. Mg2+/Mg) and high capacities (150 mAh g?1) accompanied by the coherent structural transformation into the rocksalt structure. This review summarizes the recent progress in the development of such spinel–rocksalt transition materials from the viewpoints of the reaction mechanisms, design guidelines of spinel oxides (for tailoring the redox potential, volume change, and cyclability), and challenges to construct full-cell MRBs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号