首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62669篇
  免费   10177篇
  国内免费   2406篇
化学   62399篇
晶体学   1021篇
力学   1557篇
综合类   7篇
数学   5361篇
物理学   4907篇
  2024年   3篇
  2023年   24篇
  2022年   78篇
  2021年   280篇
  2020年   630篇
  2019年   2423篇
  2018年   2289篇
  2017年   2753篇
  2016年   3063篇
  2015年   5365篇
  2014年   5032篇
  2013年   7016篇
  2012年   5537篇
  2011年   5163篇
  2010年   4259篇
  2009年   4030篇
  2008年   4377篇
  2007年   3705篇
  2006年   3475篇
  2005年   3318篇
  2004年   2737篇
  2003年   2477篇
  2002年   3104篇
  2001年   1562篇
  2000年   1436篇
  1999年   638篇
  1998年   77篇
  1997年   54篇
  1996年   74篇
  1995年   60篇
  1994年   48篇
  1993年   49篇
  1992年   33篇
  1991年   17篇
  1990年   17篇
  1989年   7篇
  1988年   7篇
  1987年   5篇
  1986年   4篇
  1985年   5篇
  1984年   8篇
  1983年   1篇
  1982年   4篇
  1981年   5篇
  1980年   2篇
  1979年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The influences of thermal treatment on cold crystallization and the thermal behavior of poly‐L‐lactide (PLLA) were investigated by DSC and polarizing microscopy. Both the cooling and heating rates had effects on cold crystallization. Double peaks were observed for the samples on subsequently heating at 10°C min?1 after cooling between 5 and 20°C min?1. The degrees of crystallinity dramatically increased with decreasing cooling rate, and the size of PLLA spherulites increased with a decrease in the cooling rate. Double cold crystallization peaks were also observed during heating traces at higher rates for this material after fast cooling (20°C min?1) from the melt. The competition between the crystallization from the nuclei formed during cooling, and that from spontaneous nucleation might be responsible for the appearance of double peaks.  相似文献   
992.
The effects of ethylene units content and crystallization temperature on the conformations, and the thermal and crystallization behavior were investigated by a combination of Fourier transform infrared (FTIR) spectroscopy, wide angle X-ray diffraction (WAXD), and differential scanning calorimetry (DSC). The characterization of FTIR spectroscopy proves that the longer helical conformation sequences of the propylene–ethylene random (PER) samples decrease, whereas the shorter helical conformation sequences increase with the increase in ethylene units content. The increase of the shorter helical conformation sequences is favorable for the formation of the γ-phase in the crystals. A group of broad endothermic peaks can be seen clearly in the DSC curves of PER copolymers, which may be associated with the melting of mixtures of the α- and γ-forms in the crystals. The melting point, crystallization temperature, and crystallinity degree of the PER copolymers decrease with the increase in ethylene units contents. Three typical melting peaks of the PER copolymers crystallized isothermally between 80°C and 130°C were observed. The two higher melting peaks result from melting of the α- and γ-phase in the crystals, whereas the materials crystallized on quenching give the lowest peak. The WAXD results confirm that the PER copolymers crystallize from the melt, as mixtures of α and γ forms, in a wide temperature range. The critical number ζlim of the crystallizable units for the α-form increases with the increase in crystallization temperature for PER copolymers, which is favorable for the formation of the γ phases. The amount of γ-form increases with the increase in crystallization temperature at the expense of its α component, then reaches a maximum value at the crystallization temperature of 115°C, and finally decreases with further increase in the crystallization temperature.  相似文献   
993.
The effects of solvents on chemical phenomena (rate and equilibrium constants, spectroscopic transitions, etc.) are conveniently described by solvation free‐energy relationships that take into account solvent acidity, basicity and dipolarity/polarizability. The latter can be separated into its components by manipulating the UV–vis spectra of two solvatochromic probes, 2‐(N,N‐dimethylamino)‐7‐nitrofluorene (DMANF) and a di‐(tert‐butyl)‐tetramethyl docosanonaen probe (ttbP9) whose synthesis is laborious and expensive. Recently, we have shown that the natural dye β‐carotene can be conveniently employed instead of ttbP9 for the determination of solvent polarizability (SP) of 76 molecular solvents and four ionic liquids. In the present work, we report the polarizabilities of further 24 solvents. Based on the solvatochromism of β‐carotene and DMANF, we have calculated solvent dipolarity (SD) for 103 protic and aprotic molecular solvents, and ionic liquids. The dependence of SD and SP on the number of carbon atoms in the acyl‐ or alkyl group of several homologous series (alcohols; 2‐alkoxyethanols; carboxylic acid‐ anhydrides, and esters, ionic liquids) is calculated and briefly discussed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
994.
Intermolecular interactions and properties of octahydro‐1,3,5,7‐tetranitro‐1,3,5,7‐ tetrazocine (HMX) / 2,6‐diamino‐3,5‐dinitropyrazine‐1‐oxide (LLM‐105) cocrystal were studied by using the dispersion‐corrected density functionals (ωB97XD, B97D) and meta‐hybrid functional (M062x) methods. Binding energies, heats of formation, thermodynamic properties, atoms in molecules, and natural bond orbital analysis were performed to investigate HMX/LLM‐105 complexes. Results show that the main intermolecular interactions between HMX and LLM‐105 are CH…O, NH…O, N…O, and O…O interactions. In addition, Monte Carlo simulation was employed to predict the crystal structure of HMX/LLM‐105 cocrystal. The HMX/LLM‐105 cocrystal is most likely to crystallize in C2/c space group, and its corresponding cell parameters are Z = 8, a = 41.63 Å, b = 6.77 Å, c = 45.63 Å, ß = 164.55°, and ρ = 1.99 g/cm3. Detonation velocity and pressure of HMX/LLM‐105 cocrystal are 8.95 km/s, 37.69GPa, a little lower than those of HMX (9.10 km/s, 37.76GPa). However, according to the net charges of nitro group, HMX/LLM‐105 cocrystal exhibits less sensitive than HMX. Finally, bond dissociation energy calculation shows that HMX/LLM‐105 complexes are thermally stable. Considering thermal stability, sensitivity, and detonation performance, HMX/LLM‐105 cocrystal meets the requirements of insensitive high energy density materials. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
995.
Fluorinated Eu‐doped SnO2 nanostructures with tunable morphology (shuttle‐like and ring‐like) are prepared by a hydrothermal method, using NaF as the morphology controlling agent. X‐ray diffraction, field‐emission scanning electron microscopy, high‐resolution transmission electron microscopy, X‐ray photoelectron spectroscopy, and energy dispersive spectroscopy are used to characterize their phase, shape, lattice structure, composition, and element distribution. The data suggest that Eu3+ ions are uniformly embedded into SnO2 nanocrystallites either through substitution of Sn4+ ions or through formation of Eu‐F bonds, allowing for high‐level Eu3+ doping. Photoluminescence features such as transition intensity ratios and Stark splitting indicate diverse localization of Eu3+ ions in the SnO2 nanoparticles, either in the crystalline lattice or in the grain boundaries. Due to formation of Eu‐F and Sn‐F bonds, the fluorinated surface of SnO2 nanocrystallites efficiently inhibits the hydroxyl quenching effect, which accounts for their improved photoluminescence intensity.  相似文献   
996.
This Letter reports the novel use of poly(9‐vinylcarbazole) (PVK) as a dielectric interfacial layer for n‐type organic field‐effect transistors (n‐OFETs). With PVK, both the air stability and electron mobility of N,N′‐ditridecylperylene‐3,4,9,10‐tetracarboxylic diimide (PTCDI‐C13)‐based OFETs were improved. Among the PVKs with different weight‐average molecular weight (Mw), PVK with high Mw showed good performance. The high glass transition temperature of PVK enabled thermal post annealing of the active layer, which resulted in a high electron mobility of 0.61 cm2/Vs. This mobility was maintained at 90% and 59% after 4 days and 105 days in air, respectively. The PVK interfacial layer reduced the trapped charges in the PTCDI‐C13‐based n‐OFET for air‐exposure and caused a decrease in the threshold voltage shift.

  相似文献   

997.
An efficient cathode material with high transparency (93%) based on conducting polymer poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and single wall carbon nanotubes (SWCNTs) has been developed for the fabrication of highly transparent and flexible field electron emitters (FEE). This kind of material showed superior field emission (FE) performance with very high current density (10–3A/cm2) at very low electric field. The FE performance of the hybrid materials was dramatically improved compared to either SWCNTs and PEDOT:PSS. Thus the hybrid structures of conducting polymer and SWCNTs might be a good choice for use as a cathode material to enhance the FE performance and for potential application in future portable displays. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
998.
Ordered Sr2CrReO6 has been synthesized recently. It is measured to be ferrimagnetic semiconductor, in contrary to the previous reports of metallic properties. To solve the discrepancy, we have investigated the compound by using the density functional theory. The semiconducting behavior is reproduced by including the electron correlation and spin–orbit coupling simultaneously. The calculated band gap is 0.22 eV, close to the experimental value of 0.21 eV. A large orbital moment of 0.69µB is found for Re, which is caused by the Coulomb‐enhanced spin–orbit coupling. By applying pressure, a semiconductor to half‐metal transition is observed through 5% volume compression.

  相似文献   

999.
X‐ray absorption and scattering spectroscopies involving the 3d transition‐metal K‐ and L‐edges have a long history in studying inorganic and bioinorganic molecules. However, there have been very few studies using the M‐edges, which are below 100 eV. Synchrotron‐based X‐ray sources can have higher energy resolution at M‐edges. M‐edge X‐ray absorption spectroscopy (XAS) and resonant inelastic X‐ray scattering (RIXS) could therefore provide complementary information to K‐ and L‐edge spectroscopies. In this study, M2,3‐edge XAS on several Co, Ni and Cu complexes are measured and their spectral information, such as chemical shifts and covalency effects, are analyzed and discussed. In addition, M2,3‐edge RIXS on NiO, NiF2 and two other covalent complexes have been performed and different dd transition patterns have been observed. Although still preliminary, this work on 3d metal complexes demonstrates the potential to use M‐edge XAS and RIXS on more complicated 3d metal complexes in the future. The potential for using high‐sensitivity and high‐resolution superconducting tunnel junction X‐ray detectors below 100 eV is also illustrated and discussed.  相似文献   
1000.
Synchrotron radiation microangiography is a powerful tool for assessing adverse changes in pulmonary vessel density associated with primary pulmonary hypertension (PH). Congestive heart failure (CHF) leads to a `secondary' onset of PH, yet it is unknown whether secondary PH is also associated with reduced vessel density. This study utilized synchrotron radiation to assess both pulmonary vessel density and endothelial function in a Dahl rat model of CHF with secondary PH. High salt‐fed Dahl salt‐sensitive (Dahl‐S) and salt‐resistant (Dahl‐R) rats were anesthetized and microangiography was performed to assess the pulmonary vessel density and vascular responses to (i) sodium nitroprusside (5.0 µg kg?1 min?1), (ii) acetylcholine (3.0 µg kg?1 min?1) and (iii) ET‐1A receptor blockade, BQ‐123 (1 mg kg?1). Dahl‐S rats developed CHF and secondary PH as evident by endothelial dysfunction, impaired vasodilatory responses to acetylcholine, enhanced vasodilatory responses to BQ‐123 and extensive pulmonary vascular remodeling. Consequently, the pulmonary vessel density was adversely reduced. Interestingly, the etiology of secondary PH manifests with structural and functional changes that are comparable with that previously reported for primary PH. One important discrepancy, however, is that ET‐1 modulation of pulmonary vessels is most striking in vessels with a diameter range of 100–200 µm in secondary PH, in contrast to a range of 200–300 µm in primary PH. Such discrepancies should be considered in future studies investigating primary and secondary forms of PH.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号