首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   647篇
  免费   158篇
  国内免费   138篇
化学   357篇
晶体学   106篇
力学   133篇
综合类   7篇
数学   14篇
物理学   326篇
  2024年   3篇
  2023年   4篇
  2022年   17篇
  2021年   15篇
  2020年   17篇
  2019年   7篇
  2018年   8篇
  2017年   49篇
  2016年   66篇
  2015年   14篇
  2014年   32篇
  2013年   40篇
  2012年   40篇
  2011年   57篇
  2010年   32篇
  2009年   57篇
  2008年   49篇
  2007年   55篇
  2006年   53篇
  2005年   33篇
  2004年   34篇
  2003年   42篇
  2002年   33篇
  2001年   22篇
  2000年   22篇
  1999年   25篇
  1998年   11篇
  1997年   30篇
  1996年   12篇
  1995年   16篇
  1994年   18篇
  1993年   4篇
  1992年   4篇
  1991年   7篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1985年   1篇
  1982年   1篇
  1971年   1篇
排序方式: 共有943条查询结果,搜索用时 31 毫秒
131.
脉冲形成网络的设计与实验研究   总被引:10,自引:10,他引:0       下载免费PDF全文
 采用陶瓷无感电容器作为储能介质,设计了一种低阻抗高储能密度的中等高压脉冲形成网络。该脉冲形成网络采用无感陶瓷电容器作为储能介质,每一个电容器的容值为1.7 nF。电容器采用相对介电常数较高的钛酸钡作为材料,单个电容器的直径为6 cm、高度为4 cm,该电容器在变压器油中的工作电压可以达到50 kV。实验结果表明,设计的单线型中等高压脉冲形成网络可在1 Ω的匹配负载上获得半高宽220 ns,前沿为40 ns的高压脉冲,能很好满足脉冲功率系统小型化的应用要求。实验研究还表明,设计的低阻抗Blumlein型脉冲形成网络,在工作电压为44 kV时可在2.5 Ω的低阻抗负载上获得脉宽230 ns,前沿约为50 ns的脉冲。  相似文献   
132.
杭州老虎洞窑古陶瓷成分的化学计量学研究   总被引:1,自引:0,他引:1  
用支持向量机算法研究了与杭州老虎洞古陶瓷有关的两个断源、断代问题。作为化学计量学的~种新型分类算法,支持向量机在小样本问题上表现出良好的泛化能力,与特征选择方法结合,可以有效处理样本少,特征多的问题。本研究综合利用支持向量机、特征选择算法和其它化学计量学算法研究了杭州凤凰山麓万松岭附近的古窑遗址和“传世哥窑”的断源、断代问题,证明老虎洞窑与郊坛下窑产品截然不同,万松岭附近地面收集瓷片样本是老虎洞窑宋代地层的瓷片滑落所致,而“传世哥窑”样品可能是老虎洞窑元代时的产品。实验表明:支持向量机算法与化学分析相结合可以成为研究古陶瓷断源和断代问题的一种新方法。  相似文献   
133.
三维层流等离子体射流中陶瓷颗粒的运动与加热   总被引:5,自引:0,他引:5  
本文对带载气-颗粒侧向喷射的三维层流等离子体长射流中陶瓷颗粒的运动与加热进行了模拟研究,并与忽略载气喷射影响时的结果进行了比较。模拟结果表明,侧向载气喷射所引起的三维效应对颗粒行为有明显影响,陶瓷颗粒在等离子体射流中加热时颗粒内部可能出现相当大的温差,取决于环境参数,陶瓷颗粒表面温度可以高于也可以低于中心温度。  相似文献   
134.
许峰  胡小方  赵建华  袁清习 《化学学报》2009,67(11):1205-1210
利用同步辐射CT (SR-CT)技术, 在氮化硅陶瓷样品烧结过程中对其进行实时投影成像, 并应用滤波反投影算法和数字图像处理技术, 得到了样品在整个烧结过程中内部微结构演化的二维和三维重建图像, 实现了对陶瓷固相烧结过程实时、无损的观测. 通过重建图像清晰观测到了陶瓷样品在烧结三个阶段中颗粒接触、烧结颈形成、晶粒和气孔长大、气孔球化并收缩等烧结现象; 统计了样品在不同烧结时刻的孔隙率, 得到了孔隙率随烧结时间对数的变化曲线, 并根据曲线分析了样品在不同烧结时刻致密化速率的变化, 得到了烧结中期孔隙率和时间对数的线性关系. 实验的结果和现有烧结理论相吻合, 并为进一步完善烧结理论提供了有效的实验数据.  相似文献   
135.
Low temperature routes have been developed for the preparation of BaCe0.9Y0.1O2.95 (BCY10) and BaZr0.9Y0.1O2.95 (BZY10) in the form of nanoparticulate powders for use after densification as ceramic membranes for a proton ceramic fuel cell. These methods make use on the one hand of the chelation of metal (II), (III) and (IV) ions by acrylates (hydrogelation route) and on the other of the destabilisation and precipitation of micro-emulsions. Both routes lead to single phase yttrium doped barium cerate or zirconate perovskites, as observed by X-ray diffraction, after thermal treatment at 900 °C for 4 h for BCY10 and 800 °C for BZY10. These temperatures, lower than those usually used for preparation of barium cerate or zirconate, lead to oxide nanoparticles of size <40 nm. Dense ceramics (?95%) are obtained by sintering BCY10 pellets at 1350 °C and BZY10 pellets at 1500 °C for 10 h. The water uptake of compacted samples at 500 °C is 0.14 wt% for BCY10 and 0.26 wt% for BZY10. Total conductivities in the range 300-600 °C were determined using impedance spectroscopy in a humidified nitrogen atmosphere. The total conductivity was 1.8×10−2 S/cm for BCY10 and 2×10−3 S/cm for BZY10 at 600 °C. The smallest perovskite nanoparticles and highest conductivities were obtained by hydrogelation of precursor barium, zirconium, cerium and yttrium acrylates.  相似文献   
136.
RF3 and R0.95Sr0.05F2.95 (R = La, Ce, Pr, Nd) ceramic specimens were prepared by hot pressing at 1173 K under pressure of 3 × 108 Pa for 20 min. The ionic conductivity value was determined by means of impedance spectroscopy in vacuum from 293 to 823 K. For LaF3 at 350 K, the single crystal / ceramics conductivity ratio is about 5. The difference decreases at higher temperature and disappears about 500 K. The ionic conductivity activation energy is 0.30 ± 0.05 eV. For La0.95Sr0.05F2.95, the conductivity of ceramics below 500 K is slightly lower that of single crystals. At T > 500 K, the conductivity values of ceramic and single crystal specimens practically coincide. The ionic conductivity of hot pressed ceramics is about 10?2 S/cm at 500 K and activation energy is 0.25 ± 0.02 eV.  相似文献   
137.
从提高陶瓷材料的力学性能出发,采用真空热压工艺,制备了混合稀土氧化物稳定的Y-Ce-ZrO2-TiC-Al2O3复合陶瓷材料。对复合陶瓷材料进行了摩擦磨损性能实验研究,采用扫描电镜对其磨损表面形貌进行了观察,对磨损表面物相进行了X射线衍射分析。并与单相ZrO2陶瓷作对比,探讨了复合陶瓷材料的磨损机理。研究表明,该复合陶瓷材料具有较高的综合力学性能,在法向载荷为140 N、转速为200 r/min干摩擦条件下,Y-Ce-ZrO2-TiC-Al2O3复合陶瓷摩擦系数为0.65,磨损率为2.88×10-7mm3/N.m,明显低于单相ZrO2陶瓷,其磨损机理为机械冷焊和粘着磨损。  相似文献   
138.
We successfully obtain high-average-power high-stability Q-switched green laser based on diode-side-pumped composite ceramic Nd:YAG in a straight plano-concave cavity. The temperature distribution in composite ceramic Nd:YAG crystal is numerically analyzed and compared with that of conventional Nd:YAG crystal. By use of a composite ceramic Nd:YAG rod and a type-II high gray track resistance KTP (HGTR-KTP) crystal, a green laser with an average output power of 165 W is obtained at a repetition rate of 25 kHz, with a diode-to-green optical conversion of 14.68%, and a pulse width of 162 ns. To the best of our knowledge, both the output power and optical-to-optical efficiency are the highest values for green laser systems with intracavity frequency doubling of this novel composite ceramic Nd:YAG laser to date. The power fluctuation at around 160 W is lower than 0.3% in 2.5 hours.  相似文献   
139.
增强纤维对陶瓷基摩擦材料摩擦磨损性能的影响   总被引:2,自引:0,他引:2  
采用热压烧结法制备纤维增强陶瓷基摩擦材料,研究了钢纤维、钢纤维/莫来石纤维、莫来石纤维、钢纤维/硅酸铝纤维以及硅酸铝纤维增强陶瓷基摩擦材料的摩擦磨损特性.研究结果表明:不同纤维对陶瓷基摩擦材料摩擦系数的影响较为复杂.相比较添加单一纤维增强摩擦材料的情况,钢纤维增强的试样具有较好的耐磨性能,其次为莫来石纤维增强的试样,硅酸铝纤维增强的试样表现出最差的耐磨性能,钢纤维/莫来石纤维和钢纤维/硅酸铝纤维增强试样的磨损均低于相应的陶瓷纤维增强的试样;在高温下以莫来石纤维增强的试样,其磨损形式以磨粒磨损为主,而以硅酸铝纤维和钢纤维/硅酸铝纤维增强的试样的主要磨损形式为黏着磨损,钢纤维和钢纤维/莫来石纤维增强的试样的磨损属于磨粒磨损和黏着磨损.  相似文献   
140.
复合液腔高灵敏度水听器   总被引:1,自引:0,他引:1  
探索新的换能器结构是提高换能器性能的主要途径之一。设计了一种利用液腔结构提高接收灵敏度的水听器,称为复合液腔水听器。该水听器用压电陶瓷圆管作为敏感材料,并将其放在一个底部开孔的金属圆桶内。在流体中,开孔圆桶形成两个频率不同的液腔谐振模态,并与压电陶瓷圆管的径向谐振模态衔接在一起,形成具有一定带宽的高接收灵敏度频段。采用有限元方法对水听器进行了优化设计并研制了水听器样机。水池测试结果表明,该水听器样机在1.5 k Hz~11.5 k Hz频率范围内灵敏度保持在-185 d B以上,比传统的压电陶瓷圆管水听器结构具有显著优势。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号