首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   18篇
  国内免费   2篇
化学   7篇
晶体学   9篇
物理学   93篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2017年   5篇
  2015年   5篇
  2014年   5篇
  2013年   3篇
  2012年   5篇
  2011年   5篇
  2010年   6篇
  2009年   3篇
  2008年   7篇
  2007年   9篇
  2006年   4篇
  2005年   1篇
  2004年   7篇
  2003年   12篇
  2002年   5篇
  2001年   7篇
  2000年   8篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
排序方式: 共有109条查询结果,搜索用时 605 毫秒
31.
采用高温固相法合成钒基荧光材料YVO4:Bi3+,其最佳掺杂浓度是1.5%,最宜煅烧温度为1000℃.用XRD,SEM以及荧光光谱等手段对所合成的荧光粉进行了表征,结果表明,样品在近紫外光254 nm激发下,产生位于300 ~ 750 nm的宽带发射峰.其中,铋离子浓度为1.5%时,样品的荧光发射主峰543 nm.  相似文献   
32.
以电纺TiO2纳米纤维为基质, 柠檬酸为软模板, 采用一步水热法制备了具有三维立体网状结构的稀土Dy 3+掺杂YVO4/TiO2复合纤维. 通过X射线衍射、 扫描电子显微镜、 X射线光电子能谱、 N2吸附-脱附、 紫外-可见漫反射光谱及荧光光谱等手段对材料的组成、 表面形貌和性能进行表征, 以光分解水产氢实验考察其光催化活性. 结果表明, Dy 3+YVO4纳米枝与TiO2纳米纤维相互交联构筑的纳米纤维网具有大比表面积, 可提供更多活性位点, 改善了多相光催化反应的传递过程; 稀土Dy 3+掺杂的YVO4与TiO2复合形成异质结相互促进, 在拓宽光谱响应范围、 提高太阳光利用率的同时使光生电子-空穴对得到较好分离, 从而提高了样品的光催化活性. 模拟太阳光照射下, Dy 3+YVO4/TiO2复合纤维光催化产氢速率达到8.63 mmol· h -1·g -1, 是纯TiO2纳米纤维的10倍.  相似文献   
33.
根据掺杂Er3+(0.5%)的YVO4样品的吸收光谱,用Jubb-Ofelt理论拟合出唯象强度参最Ωλ,并由此计算了激发能级的振子强度、自发辐射跃迁速率、荧光分支比和积分发射截面等光谱参量.并根据这些光学参量,分析了Er3+:YVO4晶体的应用价值.其中,特别是4I13/2→4I15/2, 2H11/2→4I15/2, 4S3/2→4I15/2和4F9/2→4I15/2等几个强发光能级具有较大的振子强度(大于10-6)和积分发射截面(大于10-18cm),分别分析了它们的应用前景,因此非常值得关注.并且,本文结果和Capobianco等所报道的Er3+(2.5 mol%):YVO4晶体强度参量结果很相近.而且,通过比较掺Er3+钒酸钇晶体和掺Er3+其他晶体的光学性能,可以看出钒酸钇晶体作为激光晶体的优点.最后,还根据Er3+在晶体中的对称性,利用群论讨论了Er3+在YVO4晶场中各能级的劈裂情况.  相似文献   
34.
An efficient single-frequency Nd:YVO4 master-oscillator power-amplifier is described. Gated pulses from a CW diode-pumped ring laser were amplified by three Nd:YVO4 amplifiers. Pulses of 1mJ energy; 2 kW peak power and 1 μs duration were obtained at a repetition frequency of 10 kHz. Analogue shaping of the input pulses was used to control the output pulse shape and thus extend the useful range of pulse widths from the 100 ns to the μs regime. A simple mathematical expression was used to model the results which provided reasonable agreement with the experimental work. This system offers a promising pump source for a quasi-CW singly-resonant optical parametric oscillators.  相似文献   
35.
1 Introduction  Thelasingperformancesofrare earthionTm3 dopedlasercrystalsat~ 2 .3 μmand~1 .9μmwavelength ,correspondingto3H4→3H5 and3F4→ 3H6 transitionswerestudiedbyJ .A .Caird[1] andL .F .Johnson[2 ] .RecentlyF .S .Ermeneux[3] suggestedthelasingpossibilitiesofTm3 dopedlaserc…  相似文献   
36.
YVO4双折射晶体生长及完整性分析   总被引:2,自引:1,他引:1  
在较低氧分压的保护气氛中用提拉法(CZ法)生长YVO4晶体,采用自行设计的气压计,精密调节炉内的氧、氮比例,有效防止了晶体生长中的过度缺氧,生长出33mm×31mm(等径)YVO4晶体.设计了生长YVO4晶体最佳工艺条件:转速5~10r/min,拉速:2~6mm/h,生长周期:24h,液面上8mm温度梯度2.875℃/mm.用偏光显微镜对YVO4晶体的裂纹、散射颗粒、包裹物、偏心生长等缺陷进行观察,认为它们的成因主要是生长速率过快,生长环境中湿度大及晶体中存在分解和挥发性物质等.  相似文献   
37.
The interrelation between the phase matching condition for second harmonic generation (SHG) and the electro-optic Q-switching in KTP was numerically analyzed. A diode-pumped Q-switched Nd: YVO4/KTP green laser was reported, where the KTP crystal was simultaneously used as both an electrooptic Q-switcher and a frequency-doubling crystal in type Ⅱ phase matching.Compared with the conventional frequency-doubling and Q-switching configuration, low loss and high efficiency characteristics were realized by using a single KTP crystal. The Q-switched green laser pulse with a peak power of 762 W and a pulse width of 12 ns was obtained with 1 W pump power.  相似文献   
38.
微型Nd:YVO4激光器在碘分子调制转移光谱中的应用   总被引:3,自引:0,他引:3  
毕志毅  罗明  丁晶新  马龙生 《光学学报》2000,20(12):1699-1703
以半导体激光器抽运微型Nd:YVO4倍频激光器为光源获得碘分子在532nm处的光外差调制转移光谱信号,并对获取最佳稳频信号的实验条件进行了讨论。  相似文献   
39.
YxVO4:0.01Dy3+ and Y0.99-xVO4:0.01Dy3+,xBi3+ phosphors were synthesized by chemical coprecipitation method.Their crystal structure,micromorphology and photoluminescence (PL) properties were investigated by X-ray diffraction (XRD),scan electron microscopy (SEM) and spectrofluorometer.YxVO4:0.01Dy3+ and Y0.99-xVO4:0.01Dy3+,xBi3+ phosphors have a broad excitation band from about 250 to 350 nm including a strongest peak at about 310 nm.Under its excitation,the emission spectra exhibits two sharp peaks,one of which centered at about 483 nm for 4 F9/2→6 H15/2 transition of Dy3+ and the other at about 574nm due to the 4F9/2→6H13/2 transition of Dy3+.For YxVO4:0.01Dy3+ (x=0.94,0.97,0.99,1.01,1.03)phosphor,with increasing value of x,the body color of phosphor changes from yellow to white and the strongest peak in the excitation spectra shifts a little to shorter wavelength.It is detrimental to luminous intensity when Y3+ content deviates stoichiometric ratio.For Y0.99-xVO4:0.01Dy3+,xBi3+ (x=0.01,0.05,0.1,0.15,0.2,0.25) phosphor,the samples have extraneous bismuth vanadium oxide phase except for the major tetragonal zircon structure when x≥0.20.With increasing value of x,the band edge in the excitation spectra shifts to longer wavelength,the excitation intensity and luminous intensity increase early and decrease late.When the value of x is 0.01,the intensities increase evidently.In addition,the influence of Y3+ or Bi3+ on the color temperature of emission and micromorphology of YVO4:Dy3+ is slight.  相似文献   
40.
Anti‐counterfeiting technologies are desired to protect products far away from the violation of dummy, fake and shoddy goods. The phosphor of (Y,Gd)VO4:Bi3+,Eu3+ was synthesized for the application of this purpose. Its photoluminescence was investigated by exciting with different wavelengths at variant temperatures. Wide emission color ranged from green through yellow to orange was tuned up by tailor‐ing Bi3+ and Eu3+ concentrations. The temperature dependent luminescence and wavelength selective excitation of (Y,Gd)VO4:Bi3+,Eu3+ were observed, which provide different encryptions in anti‐counterfeiting. To verify the feasibility in application, two anti‐counterfeiting patterns were fabricated practically and excellent performance was obtained. Moreover, the physical mechanisms for the different phenomena of luminescence were elucidated from excitation spectra combining with the configuration coordinate model. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号