全文获取类型
收费全文 | 14894篇 |
免费 | 4403篇 |
国内免费 | 5482篇 |
专业分类
化学 | 7609篇 |
晶体学 | 337篇 |
力学 | 696篇 |
综合类 | 320篇 |
数学 | 1379篇 |
物理学 | 14438篇 |
出版年
2024年 | 118篇 |
2023年 | 384篇 |
2022年 | 445篇 |
2021年 | 522篇 |
2020年 | 343篇 |
2019年 | 397篇 |
2018年 | 264篇 |
2017年 | 399篇 |
2016年 | 446篇 |
2015年 | 530篇 |
2014年 | 1123篇 |
2013年 | 820篇 |
2012年 | 877篇 |
2011年 | 916篇 |
2010年 | 946篇 |
2009年 | 1026篇 |
2008年 | 1127篇 |
2007年 | 941篇 |
2006年 | 1080篇 |
2005年 | 977篇 |
2004年 | 942篇 |
2003年 | 1011篇 |
2002年 | 940篇 |
2001年 | 862篇 |
2000年 | 752篇 |
1999年 | 643篇 |
1998年 | 555篇 |
1997年 | 656篇 |
1996年 | 657篇 |
1995年 | 630篇 |
1994年 | 516篇 |
1993年 | 476篇 |
1992年 | 537篇 |
1991年 | 545篇 |
1990年 | 468篇 |
1989年 | 435篇 |
1988年 | 159篇 |
1987年 | 125篇 |
1986年 | 69篇 |
1985年 | 52篇 |
1984年 | 31篇 |
1983年 | 33篇 |
1982年 | 2篇 |
1959年 | 2篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
压强是工业生产过程中的一个重要参数,其准确测量是过程控制的关键。气体分子光谱线型和线宽取决于分子间相互作用和温度、气压等因素,利用窄线宽气体吸收光谱的压力展宽效应,可通过高分辨地测量气体吸收谱线得到压强信息,实现压力计校准。提出了一种基于光腔衰荡光谱技术和气体吸收谱线压力展宽效应的压力计校准方法。采用5.2 μm可调谐量子级联激光器,基于连续光腔衰荡光谱技术建立了压力计校准实验装置。室温下,测量水汽在1 877 cm-1附近的一吸收谱线,线宽为0.084 21 cm-1,重复性测量误差小于1.53×10-4 cm-1,对应的压强大小为98.12 kPa,检测灵敏度优于0.18 kPa,与高精度压力计读数98.14 kPa一致。利用测试谱线线宽与压强的关系得到压力展宽系数(0.087 12±0.000 965) cm-1·atm-1,与HITARN数据库参考值0.087 1 cm-1·atm-1一致。实验校准了一小量程压力计。结果表明基于光腔衰荡光谱的高分辨吸收谱线测量在压强检测和压力计校准领域具有很好的应用前景。 相似文献
992.
磁约束等离子体中杂质(特别是高Z杂质)的存在将大大增强等离子体辐射功率损失,破坏等离子体的约束性能。杂质行为的定量研究首先要求对杂质测量的光谱诊断系统进行绝对强度标定,获得灵敏度响应曲线。介绍了EAST托卡马克上的快速极紫外光谱仪系统绝对强度的原位标定方法。在波长范围20~150Å内,通过对比极紫外(EUV)波段连续轫致辐射强度的计算值和测量值得到光谱仪的绝对强度标定。在此过程中,首先由(523±1) nm范围内可见连续轫致辐射强度的绝对测量值计算出有效电荷数Zeff,进而结合电子温度和密度分布计算EUV波段连续轫致辐射强度;EUV波段连续轫致辐射强度的测量值即为不同波长处探测器的连续本底计数扣除背景噪声计数值。对于较长波段范围130~280Å,通过对比等离子体中类锂杂质离子(Fe23+,Cr21+,Ar15+)和类钠杂质离子(Mo31+,Fe15+)发出的共振谱线对(跃迁分别为1s22s 2S1/2-1s22p 2P1/2, 3/2及2p63s 2S1/2-2p63p 2P1/2, 3/2)强度比的理论和实验值进行相对强度标定。其中共振谱线对强度比的理论值由辐射碰撞模型计算得到,模型中处在各个能级的离子数主要由电子碰撞激发,去激发以及辐射衰变三个过程决定。两种方法相结合,实现了光谱仪20~280Å范围的绝对强度标定。考虑轫致辐射、电子温度及电子密度的测量误差,绝对标定误差约为30%。在绝对标定的基础上,我们对杂质特征谱线强度进行绝对测量,并将测量结果与杂质输运程序结合ADAS(Atomic Data and Analysis Structure)原子数据库计算得到的模拟值进行比较,进而估算等离子体中的杂质浓度。 相似文献
993.
报道了一种基于硅光电信增管(SiPM)的时间相关多光子计数(TCMPC)技术并将其应用于时间分辨拉曼散射测量。相比于常规基于光电倍增管(PMT)或单光子雪崩二极管(SPAD)的时间相关单光子(TCSPC)技术,由于SiPM可以分辨信号脉冲的具体光子数,基于SiPM的TCMPC技术消除了信号脉冲包含的光子数必须小于等于1的限制,光子计数效率提高了10倍以上,大大节省了测量时间。此外,多光子测量比单光子测量能够得到更好的时间分辨率,时间分辨拉曼散射系统的仪器响应函数(IRF)从单光子81.4 ps缩短至双光子59.7 ps,因而可以用更窄的时间门限抑制荧光本底等噪声对拉曼散射测量的影响。使用TCMPC技术测量CCl4在0.5和1.5 p.e.两个不同光子数阈值的拉曼峰的峰本比,后者较高的光子数阈值能进一步降低SiPM暗计数噪声的影响,增加了拉曼信号测量的信噪比,测量得到的CCl4 459 cm-1拉曼峰的峰本比是前者的6.4倍。将所述新的拉曼散射测量技术与基于PMT和锁相放大器(LIA)的传统拉曼散射测量技术进行了比较研究,前者由于可以使用仅有数十皮秒的测量门限,可以有效抑制荧光、环境杂散光和SiPM暗计数等噪声的影响,所得光谱具有更好的峰本比,测得CCl4的459 cm-1拉曼峰和Si的一阶拉曼峰的峰本比分别是后者的3.9倍和5.5倍。 相似文献
994.
激光诱导击穿光谱技术具有微损、原位、快速分析的特点,在样品分类识别、成分分析等领域有广阔的应用前景。为探索该技术在天然地质样品识别应用的可行性,提出了一种自组织特征映射神经网络结合相关判别对天然地质样品LIBS光谱分类识别的方法。为减小全谱中背景噪声等不相关数据干扰、降低计算量,在元素谱线归属的基础上进行了特征谱线提取,实现了高维光谱数据的降维。以特征谱数据为输入建立网络训练模型,得到具有输入样本特征的权向量,通过权向量与待测样本进行相关分析可以实现样品分类。对16种天然地质样品的分类算法实验证明,在全谱、主成分降维和特征谱段三种数据处理方法中,特征谱的降维和提取LIBS数据主特征效果最优。改进的SOM网络结合相关判别算法比支持向量机方法和直接应用SOM网络方法的分类准确度更高,初步证实了该方法的有效性。 相似文献
995.
头发是人体元素的排泄器官之一,头发中元素含量能反映出一段时间内矿区毒性元素在人体内的吸收和代谢情况。采用电感耦合等离子体质谱(ICP-MS)和电感耦合等离子体原子发射光谱(ICP-OES)对某铅锌矿区居民头发中Pb,As,Cd,Ca,Mg,Fe,Zn,Cu,Mn和Sr进行了定量分析,应用微区X射线荧光(Micro-XRF)和X射线吸收近边结构谱(XANES)测定了头发中的Pb和As等元素微区分布和Pb形态。研究发现(1)当地部分居民已经受到矿区中Pb,Cd,Cu和Mn等重金属污染的危害。(2)不同性别群体的生理特征和生活习惯是决定其分布特征的主要因素,其中女性头发中Pb,Cd,Ca,Mg,Zn,Cu和Sr的平均含量都显著高于男性,男性头发中的Fe显著高于女性;(3)由于各元素性质、来源和吸收机制等原因,矿区居民头发中Ca-Mg-Sr-Zn,Pb-Cd-Cu-Mn,Fe-Mn具有相关性;(4)矿区典型头发样本中Pb和As主要沿头发中轴分布,从发根至发梢含量有逐渐增多的趋势;(5)头发样品中Pb由4.7%Pb3(PO4)2,36.8%Pb-GSH和8.4%PbS组成;(6)头发中不溶性磷酸铅、铅-半胱氨酸巯基结合态是发铅的主要存在形态,揭示了其为人体铅代谢的主要途径之一。 相似文献
996.
在将耳语音转换为正常音时,为了研究降维后语音特征对耳语音转换的影响,分别对耳语音和正常音谱包络进行自适应编码以提取耳语音和正常音的低维特征,然后使用BP网络建立耳语音和正常音低维谱包络特征之间的映射关系以及正常音基频和耳语音低维谱包络特征之间的关系。转换时,根据耳语音低维谱包络特征获得对应正常音的低维谱包络特征和基频,对低维谱包络特征进行解码后获得对应的正常音谱包络。实验结果表明,采用此方法转换后的语音与正常音之间的倒谱距离相比高斯混合模型方法下降了10%,转换后语音的自然度和可懂度都有所提高。 相似文献
997.
提出了基于互相关的多普勒OCT(correlated Doppler optical coherence tomography, CD-OCT)方法, 能够有效的抑制噪声, 实现低信噪比条件下的流速探测. 对CD-OCT算法进行了详细的推导, 分析了噪声的相关性对该算法结果的影响, 最后基于谱域和时域联合探测方法(joint spectral and time domain optical coherence tomography, STD-OCT)以及CD-OCT算法的对比实验证明了该算法能够进一步实现信噪比的提高, 使测量的结果更为稳定. 相似文献
998.
999.
1000.