首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   132篇
  免费   4篇
  国内免费   1篇
化学   5篇
晶体学   19篇
物理学   113篇
  2013年   1篇
  2011年   1篇
  2010年   3篇
  2009年   5篇
  2008年   8篇
  2007年   19篇
  2006年   14篇
  2005年   3篇
  2004年   7篇
  2003年   6篇
  2002年   26篇
  2001年   13篇
  2000年   12篇
  1999年   7篇
  1998年   2篇
  1995年   6篇
  1994年   1篇
  1993年   2篇
  1987年   1篇
排序方式: 共有137条查询结果,搜索用时 15 毫秒
71.
Toyoyuki Kitamura 《Physica A》2007,383(2):232-252
An established unified theory of the liquid-glass transition in one-component liquids is extended to multi-component liquids. The universal features such as the Kauzmann paradox, the Vogel-Tamman-Fulcher (VTF) law on the relaxation times and the transport coefficients, the jump of the specific heat at the glass transition temperature and the Boson peaks are elucidated. The Kauzmann entropy in a form of a Curie law with a negative sign comes from the mixing between the sound and the intra-band fluctuation entropies, where the critical temperature corresponds to the sound instability temperature at a reciprocal particle distance. The VTF law is constructed from the Einstein relation on entropy and probability so that the Kauzmann entropy is included as a normal form in exponent of the VTF law. The Kauzmann entropy explains the Kauzmann paradox and the jump of the specific heat so that the universal features of the glass transition are elucidated consistently.  相似文献   
72.
A series of poly( -n-alkyl -L-aspartates) which are nanophase self-assembled comb-like polymers has been studied by dielectric spectroscopy in a broad frequency range ( 10-23×106 Hz), with n-alkyls side chains of various lengths, 10n18. In every member of the series the same relaxations were identified after the decomposition of the experimental isothermal trace in up to three peaks with relaxation times distributions. The strength, width and average relaxation time for all the relaxation modes were determined for each material. Besides the local low temperature, Arrhenius modes, two relaxation modes, and , present a cooperative character whose dynamics are not affected by the side chains melting. The relaxation is a polyethylene-like glass transition of the amorphous side chains and its dynamics is strongly dependent on the n value due to the increasing restrictions imposed by the self-assembled confinement. The strength of the relaxation mode increases as the lateral chains loose their 2D order. The restricted chopstick motion of the rigid rods is thought to be the origin of the mode; this motion is hindered at temperatures where the cage size decreases as a result of the increasing disorder with temperature.  相似文献   
73.
In an attempt to extend the range of model jamming transitions, we simulate systems of athermal particles which attract when slightly overlapping. Following from recent work on purely repulsive systems, dynamics are neglected and relaxation performed via a potential energy minimisation algorithm. Our central finding is of a transition to a low-density tensile solid which is sharp in the limit of infinite system size. The critical density depends on the range of the attractive regime in the pair-potential. Furthermore, solidity is shown to be related to the coordination number of the packing according to the approximate constraint-counting scheme known as Maxwell counting, although more corrections need to be considered than with the repulsive-only case, as explained. We finish by discussing how the numerical difficulties encountered in this work could be overcome in future studies.  相似文献   
74.
The enthalpy relaxation of polymer-silica nanocomposites prepared by simultaneous polymerization of poly(2-hydroxyethyl methacrylate) (PHEMA) and tetraethyloxysilane, TEOS, a silica precursor, is investigated. Both the glass transition temperature, Tg, and the temperature interval of the glass transition, ΔT g , increase as the silica content in the sample does. Structural relaxation experiments show that the temperature interval in which conformational motions take place broadens as the silica content in the hybrid increases. A phenomenological model based on the evolution of the configurational entropy during the structural relaxation process, the SC model, has been used for determining the temperature dependence of the relaxation times during the process. The results show an increase of the fragility of the polymer as the silica content increases, a feature that can be related to the broadening of the distribution of relaxation times characterized by the β parameter of the stretched exponential distribution. On another hand the silica content increase produces a significant change of the relaxation times in the glassy state.  相似文献   
75.
A comparison of the values of the glass transition temperature (Tg) measured on cooling and the limiting fictive temperature measured on heating as a function of cooling rate is performed for a polystyrene sample using both capillary dilatometry and differential scanning calorimetry (DSC). The results from both techniques indicate that is systematically lower than Tg presumably due to the breadth of the relaxation on cooling. The Tool-Narayanaswamy-Moynihan (TNM) model is used to fit the experimental data from dilatometry and DSC in order to ascertain the origins of the higher value of Tg compared to .  相似文献   
76.
High performance Brillouin spectroscopy (BS) has been used to study the elastic properties (static and dynamic) of the orientational glassy state of Na(CN)xCl1-x samples ). The temperature behaviour of the elastic properties reveals a more complex scenario for the orientational glass transition than generally believed. The shear elastic constant shows the well-known c 44 ( T ) anomaly, indicated by a minimum, found in other cyanide mixed crystals. The results obtained for the hypersonic attenuation are in clear contradiction with the dynamic character of the c 44 ( T )-minimum. The temperature behaviour of the longitudinal elastic constant c11 of very dilute Na(CN)xCl1-x samples shows two striking features: i) Similar to the anomalous temperature behaviour of c 44 ( T ), lowering the temperature c 11 ( T ) first decreases, goes through a minimum and then rises again. The minimum takes place at a temperature above the temperature, , where c 44 ( T ) reaches its minimum value. ii) A kink-like anomaly of c 11 ( T ) is observed at lower temperatures. This second anomaly is similar to the classical one observed in canonical glasses at their glass transition temperature . Received 8 April 1999 and Received in final form 3 June 1999  相似文献   
77.
We study, for the case of the two layer plane Poiseuille flow, the effect of viscosity stratification and interracial surfactant on the flow instability. Considering a normal mode of the streamwise wave number α, both the linear and energy analyses are presented. The expressions of perturbation energy supplied at the interface are derived. The result demonstrates that the jumps of horizontal velocity and tangential stress of the perturbed flow across the interface could be induced by the presence of viscosity stratification and surfactant. This is expected to be responsible for the Yih and Marangoni instability.  相似文献   
78.
Gibbs ensemble Monte Carlo (GEMC) simulations have been done on polydisperse systems of particles interacting via the Asakura-Oosawa depletion potential. On restricting the range of the depletion attraction particles aggregate forming long-lived, unequilibrated structures and it becomes increasingly difficult to sample phase space. It is found that by simply equilibrating systems sequentially starting at longer ranges of attraction, the equilibrium fluid-fluid phase coexistence can be determined down to polymer-colloid size ratios approaching 10%. For such short ranges of the depletion interaction it becomes difficult to obtain reliable estimates of chemical potentials due to occasional particle insertions resulting in very low energies. The results show that full equilibrium is not reached at a polymer-colloid size ratio of 10% in spite of lengthy simulations due to persistent structures in the dense-fluid phase dominated by particles belonging to the larger size fraction. Free-volume theory with a polydisperse colloid component, modeled as a three-component mixture, is used for qualitative comparison with some of the results of the computer simulations.  相似文献   
79.
RNA molecules form a sequence-specific self-pairing pattern at low temperatures. We analyze this problem using a random pairing energy model as well as a random sequence model that includes a base stacking energy in favor of helix propagation. The free energy cost for separating a chain into two equal halves offers a quantitative measure of sequence specific pairing. In the low temperature glass phase, this quantity grows quadratically with the logarithm of the chain length, but it switches to a linear behavior of entropic origin in the high temperature molten phase. Transition between the two phases is continuous, with characteristics that resemble those of a disordered elastic manifold in two dimensions. For designed sequences, however, a power-law distribution of pairing energies on a coarse-grained level may be more appropriate. Extreme value statistics arguments then predict a power-law growth of the free energy cost to break a chain, in agreement with numerical simulations. Interestingly, the distribution of pairing distances in the ground state secondary structure follows a remarkable power-law with an exponent -4/3, independent of the specific assumptions for the base pairing energies.  相似文献   
80.
We locate the glass transition line of the charged-hard-sphere system in the density-temperature plane, using a mean-field hypernetted chain approximation within the replica-symmetry-breaking scenario [S. Franz and G. Parisi, Phys. Rev. Lett. 79 (1997) 2486. [11]]. Our results demonstrate a dominant role of the steric factor and explain the ineffectiveness of purely Coulombic interactions in driving phase transitions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号