首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10177篇
  免费   1727篇
  国内免费   740篇
化学   4885篇
晶体学   559篇
力学   691篇
综合类   60篇
数学   232篇
物理学   6217篇
  2024年   74篇
  2023年   75篇
  2022年   137篇
  2021年   199篇
  2020年   324篇
  2019年   322篇
  2018年   293篇
  2017年   376篇
  2016年   492篇
  2015年   350篇
  2014年   406篇
  2013年   740篇
  2012年   560篇
  2011年   759篇
  2010年   657篇
  2009年   698篇
  2008年   680篇
  2007年   732篇
  2006年   757篇
  2005年   598篇
  2004年   508篇
  2003年   452篇
  2002年   430篇
  2001年   315篇
  2000年   301篇
  1999年   242篇
  1998年   191篇
  1997年   193篇
  1996年   122篇
  1995年   131篇
  1994年   138篇
  1993年   66篇
  1992年   92篇
  1991年   37篇
  1990年   37篇
  1989年   23篇
  1988年   34篇
  1987年   26篇
  1986年   9篇
  1985年   13篇
  1984年   12篇
  1983年   7篇
  1982年   8篇
  1981年   8篇
  1980年   5篇
  1977年   2篇
  1976年   2篇
  1975年   4篇
  1973年   3篇
  1957年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
The thermal stability and molecular order in monolayers of two organic semiconductors, PBI‐PA and PBI‐alkyl, based on perylene derivatives with an identical molecular structure except for an anchor group for attachment to the substrate in PBI‐PA, are reported. In situ X‐ray reflectivity measurements are used to follow the stability of these monolayers in terms of order and thickness as temperature is increased. Films have thicknesses corresponding approximately to the length of one molecule; molecules stand upright on the substrate with a defined structure. PBI‐PA monolayers have a high degree of order at room temperature and a stable film exists up to 250 °C, but decomposes rapidly above 300 °C. In contrast, stable physisorbed PBI‐alkyl monolayers only exist up to 100 °C. Above the bulk melting point at 200 °C no more order exists. The results encourage using anchor groups in monolayers for various applications as it allows enhanced stability at the interface with the substrate.  相似文献   
2.
In this study, the dye-doped polymer dispersed liquid crystals (PDLC) gratings techniques performed by the various research groups or being developed are briefly reviewed. Especially, the electrically switched diffraction and holographic gratings, have attained much attention by various research groups working in the PDLC-related display studies. The fabrication methodologies used for such grating texture, include like the conventional dye-doped PDLC grating, Azo-dye doped PDLC gratings, and lasing techniques etc., adopted for dye-doped PDLC gratings. The useful features and characteristics of their fabrication process of such gratings are discussed. Finally, some of the future perspectives on this particular research field are presented.  相似文献   
3.
Scientific interest in atomically controlled layer-by-layer fabrication of transition metal oxide thin films and heterostructures has increased intensely in recent decades for basic physics reasons as well as for technological applications. This trend has to do, in part, with the coming post-Moore era, and functional oxide electronics could be regarded as a viable alternative for the current semiconductor electronics. Furthermore, the interface of transition metal oxides is exposing many new emergent phenomena and is increasingly becoming a playground for testing new ideas in condensed matter physics. To achieve high quality epitaxial thin films and heterostructures of transition metal oxides with atomically controlled interfaces, one critical requirement is the use of atomically flat single terminated oxide substrates since the atomic arrangements and the reaction chemistry of the topmost surface layer of substrates determine the growth and consequent properties of the overlying films. Achieving the atomically flat and chemically single terminated surface state of commercially available substrates, however, requires judicious efforts because the surface of as-received substrates is of chemically mixed nature and also often polar. In this review, we summarize the surface treatment procedures to accomplish atomically flat surfaces with single terminating layer for various metal oxide substrates. We particularly focus on the substrates with lattice constant ranging from 4.00 Å to 3.70 Å, as the lattice constant of most perovskite materials falls into this range. For materials outside the range, one can utilize the substrates to induce compressive or tensile strain on the films and explore new states not available in bulk. The substrates covered in this review, which have been chosen with commercial availability and, most importantly, experimental practicality as a criterion, are KTaO3, REScO3 (RE = Rare-earth elements), SrTiO3, La0.18Sr0.82Al0.59Ta0.41O3 (LSAT), NdGaO3, LaAlO3, SrLaAlO4, and YAlO3. Analyzing all the established procedures, we conclude that atomically flat surfaces with selective A- or B-site single termination would be obtained for most commercially available oxide substrates. We further note that this topmost surface layer selectivity would provide an additional degree of freedom in searching for unforeseen emergent phenomena and functional applications in epitaxial oxide thin films and heterostructures with atomically controlled interfaces.  相似文献   
4.
The paper discusses the scaled-boundary method as applied to electroelastic problems. As an example, the stress-intensity factor is calculated for a thin rectangular piezoelectric plate with an edge crack __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 7, pp. 124–134, July 2006.  相似文献   
5.
We consider the Schrödinger operator on two types of domains depending on a small parameter : dumbbell domains and thin domains with varying orders of thinness. In both situations we compare the eigenvalues and eigenvectors of the Schrödinger operator with the corresponding eigenvalues and eigenvectors of a limit operator defined on the limit domain.  相似文献   
6.
We report a novel strategy for the front passivation of solar cells via aluminum-doped zinc oxide (AZO) films in the case of CIGS solar cells, leading to the highest efficiency of 15.07% without alkali metal post treatment and anti−reflective layer. The good passivation of CIGS solar cells via AZO films is attributed to the field passivation simulated by the SCAPS−1D software. The AZO films also exhibit high optical transparency both in visible and near infrared wavelength region, high conductivity, and cost−effective fabrication advantage. Importantly, the AZO films are deposited at room temperature via radio−frequency magnetron sputtering, showing that the AZO films are also applicable to other solar cells such as perovskite solar cells. Our work is of significance for advancing the development of CIGS−based photovoltaics devices by the well front passivation of AZO. The wide application of AZO in other solar cells such as perovskite solar cells and related tandem solar cells may also accelerate the development of these solar cells because of potential passivation of AZO, low deposition temperature, and high optical transparency of AZO.  相似文献   
7.
We used two-dimensional infrared spectroscopy to disentangle the broad infrared band in the amide II vibrational regions of Bombyx mori native silk films, identifying the single amide II modes and correlating them to specific secondary structure. Amide I and amide II modes have a strong vibrational coupling, which manifests as cross-peaks in 2D infrared spectra with frequencies determined by both the amide I and amide II frequencies of the same secondary structure. By cross referencing with well-known amide I assignments, we determined that the amide II (N-H) absorbs at around 1552 and at 1530 cm–1 for helical and β-sheet structures, respectively. We also observed a peak at 1517 cm−1 that could not be easily assigned to an amide II mode, and instead we tentatively assigned it to a Tyrosine sidechain. These results stand in contrast with previous findings from linear infrared spectroscopy, highlighting the ability of multidimensional spectroscopy for untangling convoluted spectra, and suggesting the need for caution when assigning silk amide II spectra.  相似文献   
8.
Two macrocyclic Schiff bases derived from o-phenylenediamine and 2-hydroxy-5-methylisophthalaldehyde L1 or 2-hydroxy-5-tert-butyl-1,3-benzenedicarboxaldehyde L2, respectively, were obtained and characterized by X-ray crystallography and spectroscopy (UV-vis, fluorescence and IR). X-ray crystal structure determination and DFT calculations for compounds confirmed their geometry in solution and in the solid phase. Moreover, intermolecular interactions in the crystal structure of L1 and L2 were analyzed using 3D Hirshfeld surfaces and the related 2D fingerprint plots. The 3D Hirschfeld analyses show that the most numerous interactions were found between hydrogen atoms. A considerable number of such interactions are justified by the presence of bulk tert-butyl groups in L2. The luminescence of L1 and L2 in various solvents and in the solid state was studied. In general, the quantum efficiency between 0.14 and 0.70 was noted. The increase in the quantum efficiency with the solvent polarity in the case of L1 was observed (λex = 350 nm). For L2, this trend is similar, except for the chloroform. In the solid state, emission was registered at 552 nm and 561 nm (λex = 350 nm) for L1 and L2, respectively. Thin layers of the studied compounds were deposited on Si(111) by the spin coating method or by thermal vapor deposition and studied by scanning electron microscopy (SEM/EDS), atomic force microscopy (AFM), spectroscopic ellipsometry and fluorescence spectroscopy. The ellipsometric analysis of thin materials obtained by thermal vapor deposition showed that the band-gap energy was 3.45 ± 0.02 eV (359 ± 2 nm) and 3.29 ± 0.02 eV (377 ± 2 nm) for L1/Si and L2/Si samples, respectively. Furthermore, the materials of the L1/Si and L2/Si exhibited broad emission. This feature can allow for using these compounds in LED diodes.  相似文献   
9.
Silicone elastomer composites with piezoelectric properties, conferred by incorporated polyimide copolymers, with pressure sensors similar to human skin and kinetic energy harvester capabilities, were developed as thin film (<100 micron thick) layered architecture. They are based on polymer materials which can be produced in industrial amounts and are scalable for large areas (m2). The piezoelectric properties of the tested materials were determined using a dynamic mode of piezoelectric force microscopy. These composite materials bring together polydimethylsiloxane polymers with customized poly(siloxane-imide) copolymers (2–20 wt% relative to siloxanes), with siloxane segments inserted into the structure to ensure the compatibility of the components. The morphology of the materials as free-standing films was studied by SEM and AFM, revealing separated phases for higher polyimide concentration (10, 20 wt%). The composites show dielectric behavior with a low loss (<10−1) and a relative permittivity superior (3–4) to pure siloxane within a 0.1–106 Hz range. The composite in the form of a thin film can generate up to 750 mV under contact with a 30 g steel ball dropped from 10 cm high. This capability to convert a pressure signal into a direct current for the tested device has potential for applications in self-powered sensors and kinetic energy-harvesting applications. Furthermore, the materials preserve the known electromechanical properties of pure polysiloxane, with lateral strain actuation values of up to 6.2% at 28.9 V/μm.  相似文献   
10.
The aim of this study was to minimize the risk of life-threatening thromboembolism in the ventricle through the use of a new biomimetic heart valve based on metal–polymer composites. Finite volume element simulations of blood adhesion to the material were carried out, encompassing radial flow and the cone and plane test together with determination of the effect of boundary conditions. Both tilt-disc and bicuspid valves do not have optimized blood flow due to their design based on rigid valve materials (leaflet made of pyrolytic carbon). The main objective was the development of materials with specific properties dedicated to contact with blood. Materials were evaluated by dynamic tests using blood, concentrates, and whole human blood. Hemostability tests under hydrodynamic conditions were related to the mechanical properties of thin-film materials obtained from tribological tests. The quality of the coatings was high enough to avoid damage to the coating even as they were exposed up to maximum loading. Analysis towards blood concentrates of the hydrogenated carbon sample and the nitrogen-doped hydrogenated carbon sample revealed that the interaction of the coating with erythrocytes was the strongest. Hemocompatibility evaluation under hydrodynamic conditions confirmed very good properties of the developed coatings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号