首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   912篇
  免费   6篇
  国内免费   11篇
化学   253篇
晶体学   67篇
力学   6篇
物理学   603篇
  2024年   3篇
  2023年   25篇
  2022年   3篇
  2021年   9篇
  2020年   15篇
  2019年   6篇
  2018年   10篇
  2017年   9篇
  2016年   44篇
  2015年   48篇
  2014年   49篇
  2013年   34篇
  2012年   21篇
  2011年   104篇
  2010年   133篇
  2009年   91篇
  2008年   68篇
  2007年   67篇
  2006年   32篇
  2005年   35篇
  2004年   20篇
  2003年   12篇
  2002年   23篇
  2001年   7篇
  2000年   9篇
  1999年   27篇
  1998年   15篇
  1997年   6篇
  1996年   4篇
排序方式: 共有929条查询结果,搜索用时 0 毫秒
71.
The fabrication of nanoscale oscillators working in the gigahertz (GHz) range and beyond has now become the focal center of interest to many researchers. Motivated by this issue, this paper proposes a new type of nano-oscillators with enhanced operating frequency in which both the inner core and outer shell are electrically charged. To this end, molecular dynamics (MD) simulations are performed to investigate the mechanical oscillatory behavior of ions, and in particular chloride ion, tunneling through electrically charged carbon nanotubes (CNTs). It is assumed that the electric charges with similar sign and magnitude are evenly distributed on two ends of nanotube. The interatomic interactions between carbon atoms and van der Waals (vdW) interactions between ion and nanotube are respectively modeled by Tersoff-Brenner and Lennard-Jones (LJ) potential functions, whereas the electrostatic interactions between ion and electric charges are modeled by Coulomb potential function. A comprehensive study is conducted to get an insight into the effects of different parameters such as sign and magnitude of electric charges, nanotube radius, nanotube length and initial conditions (initial separation distance and velocity) on the oscillatory behavior of chloride ion-charged CNT oscillators. It is shown that, the chloride ion frequency inside negatively charged CNTs is lower than that inside positively charged ones with the same magnitude of electric charge, while it is higher than that inside uncharged CNTs. It is further observed that, higher frequencies are generated at higher magnitudes of electric charges distributed on the nanotube.  相似文献   
72.
We have found a correlation between ZnS nanocomposite nonlinear optical features and technological processing using electrolytic method. In the earlier researches this factor was neglected. However, it may open a new stage for operation by photovoltaic features of the well known semiconductors within a wide range of magnitudes. The titled nanostructured zinc sulfide (ZnS) was synthesized by electrolytic method. The obtained ZnS nano-crystallites possessed nano-particles sizes varying within 1.6 nm…1.8 nm. The titled samples were analyzed by XRD, HR-TEM, STEM, and nonlinear optical methods such as photo-induced two-photon absorption (TPA) and second harmonic generation (SHG). For this reason the nano-powders were embedded into the photopolymer poly(vinyl) alcohol (PVA) matrices. Role of aggregation in the mentioned properties is discussed. Possible origin of the such correlations are discussed.  相似文献   
73.
In this study, we developed a facile and benign green synthesis approach for the successful fabrication of well-dispersed urchin-like Au@Pt core–shell nanoparticles (NPs) using gallic acid (GA) as both a reducing and protecting agent. The proposed one-step synthesis exploits the differences in the reduction potentials of AuCl4 and PtCl62−, where the AuCl4 ions are preferentially reduced to Au cores and the PtCl62− ions are then deposited continuously onto the Au core surface as a Pt shell. The as-prepared Au@Pt NPs were characterized by transmission electron microscope (TEM); high-resolution transmission electron microscope (HR-TEM); scanning electron microscope (SEM); UV-vis absorption spectra (UV-vis); X-ray diffraction (XRD); Fourier transmission infrared spectra (FT-IR). We systematically investigated the effects of some experimental parameters on the formation of the Au@Pt NPs, i.e., the reaction temperature, the molar ratios of HAuCl4/H2PtCl6, and the amount of GA. When polyvinylpyrrolidone K-30 (PVP) was used as a protecting agent, the Au@Pt core–shell NPs obtained using this green synthesis method were better dispersed and smaller in size. The as-prepared Au@Pt NPs exhibited better catalytic activity in the reaction where NaBH4 reduced p-nitrophenol to p-aminophenol. However, the results showed that the Au@Pt bimetallic NPs had a lower catalytic activity than the pure Au NPs obtained by the same method, which confirmed the formation of Au@Pt core–shell nanostructures because the active sites on the surfaces of the Au NPs were covered with a Pt shell.  相似文献   
74.
High-efficiency semiconductor lasers and light-emitting diodes operating in the 3–5?μm mid-infrared (mid-IR) spectral range are currently of great demand for a wide variety of applications, in particular, gas sensing, noninvasive medical tests, IR spectroscopy etc. III-V compounds with a lattice constant of about 6.1?Å are traditionally used for this spectral range. The attractive idea to fabricate such emitters on GaAs substrates by using In(Ga,Al)As compounds is restricted by either the minimum operating wavelength of ~8?μm in case of pseudomorphic AlGaAs-based quantum cascade lasers or requires utilization of thick metamorphic InxAl1-xAs buffer layers (MBLs) playing a key role in reducing the density of threading dislocations (TDs) in an active region, which otherwise result in a strong decay of the quantum efficiency of such mid-IR emitters. In this review we present the results of careful investigations of employing the convex-graded InxAl1-xAs MBLs for fabrication by molecular beam epitaxy on GaAs (001) substrates of In(Ga,Al)As heterostructures with a combined type-II/type-I InSb/InAs/InGaAs quantum well (QW) for efficient mid-IR emitters (3–3.6?μm). The issues of strain relaxation, elastic stress balance, efficiency of radiative and non-radiative recombination at T?=?10–300?K are discussed in relation to molecular beam epitaxy (MBE) growth conditions and designs of the structures. A wide complex of techniques including in-situ reflection high-energy electron diffraction, atomic force microscopy (AFM), scanning and transmission electron microscopies, X-ray diffractometry, reciprocal space mapping, selective area electron diffraction, as well as photoluminescence (PL) and Fourier-transformed infrared spectroscopy was used to study in detail structural and optical properties of the metamorphic QW structures. Optimization of the growth conditions (the substrate temperature, the As4/III ratio) and elastic strain profiles governed by variation of an inverse step in the In content profile between the MBL and the InAlAs virtual substrate results in decrease in the TD density (down to 3?×?107 cm?2), increase of the thickness of the low-TD-density near-surface MBL region to 250–300?nm, the extremely low surface roughness with the RMS value of 1.6–2.4?nm, measured by AFM, as well as rather high 3.5?μm-PL intensity at temperatures up to 300?K in such structures. The obtained results indicate that the metamorphic InSb/In(Ga,Al)As QW heterostructures of proper design, grown under the optimum MBE conditions, are very promising for fabricating the efficient mid-IR emitters on a GaAs platform.  相似文献   
75.
We apply unrestricted Hartree-Fock to modelling two systems:
(1)
We calculate the spin structure and addition spectra of small symmetric quantum dots (often called 2D “artificial atoms”), improving the accuracy considerably by including, for the first time, second-order correlation corrections. We compare the results to experiment and to previous numerical works, and find that our spin structure in some cases disagrees with that calculated within mean-field theories, such as Hartree-Fock without correlation corrections, or density-functional theory [C. Sloggett, O.P. Sushkov, Phys. Rev. B 71 (2005) 235326].
(2)
We model the well-known 0.7 anomaly in the conductance of a quantum point contact. We calculate the conductance using direct calculation of scattering phases on a ring, within Hartree-Fock. We observe strong localisation of the Fermi electrons on the barrier, and suggest a mechanism for the observed temperature-dependent conductance anomaly.
  相似文献   
76.
The effect of texture of iron foil substrate on the growth of hematite nanowires by annealing method has been investigated in detail. Three substrates of different textures were prepared from a [2 0 0] oriented iron foil by some simple processes. The hematite nanowires on these substrates were synthesized by annealing iron foil at 700 °C in moist oxygen. The growth pattern of nanowires on these substrates showed that the growth of hematite nanowires depends strongly on the iron substrate texture and [1 1 0] oriented iron grains are necessary for their growth. The samples were characterized by Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), X-ray diffraction (XRD), Electron Back Scatter Diffraction (EBSD) and Raman Spectroscopy. We have also tried to explain the various observations on the mechanism of growth. Mainly, the presence of water vapor significantly enhanced the formation of hematite nanowires which resulted in a very dense and aligned growth of nanowires on the substrate areas of favorable texture. Finally, the study proved the substrate texture to be a powerful tool to control growth of nanowires and can be used efficiently for patterning and large scale synthesis of the nanowires.  相似文献   
77.
Functionalized multiwall carbon nanotubes (MWCNT-COOH) were decorated with crystalline cobalt ferrite nanoparticles (CoFe2O4 NPs) by co-precipitation reaction to form MWCNT-COOH/CoFe2O4 hybrid. The hybrid was characterized by X-ray diffraction analysis, transmission electron microscopy (TEM), Fourier transfom infrared spectroscopy and vibrating sample magnetometry. The results confirmed that MWCNTs and CoFe2O4 NPs coexisted in the hybrid. The TEM results showed a thick layer of CoFe2O4 was intimately connected to the surface of MWCNTs. The saturation magnetization value of the hybrid was 11.5 emu/g. There has been a high frequency fluctuation in conductivity, however, above all dc conductivity changes and resulting activation energy is calculated from the Arrhenius plots. It is found to vary with the temperature regions. This can be attributed to the existence of a conventional temperature independent tunneling conduction mechanism, which can be also explained that the metallic conduction is a dominant mechanism around room temperature. The ac conductivity of MWCNT-COOH/CoFe2O4 hybrid might also be a consequence of the predictions of the universal dynamic response and the ‘n’ power exponents could be determined with lower concentration of the addition in the hybrids.  相似文献   
78.
Visible-light responsive monoclinic BiVO4/MWCNT nanocomposites were facilely prepared via an in situ hydrothermal method by using sodium dodecyl sulfonate (SDS) as a guiding surfactant. The as-prepared BiVO4/MWCNT nanocomposites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), the Fourier transform infrared spectroscopy (FTIR) and UV–vis diffuse reflectance spectroscopy. The results showed that the hydrothermal temperature and adding SDS had significant influence on the morphology and size of BiVO4. The photocatalytic activities of BiVO4/MWCNT nanocomposites were investigated by degrading methylene blue (MB) under visible-light irradiation. Remarkable enhancement in photodecomposition of MB was observed with BiVO4/MWCNT composite compared with bare BiVO4 particles. This improvement of photocatalytic was attributed to the effective charge transfer from BiVO4 nanocrystals to MWCNT, which promoted the migration efficiency of photogenerated electron–hole. Furthermore, a possible mechanism for the photocatalytic oxidative degradation was also discussed.  相似文献   
79.
Nanocrystals of Y2O3 and La2O3 solid solutions were synthesized with a cubic bixbyite structure containing La2O3 content of up to 50 mol%. This is comparatively higher than that in bulk materials of the same structure, where La2O3 content of only 20 mol% can be obtained. A set of europium-doped (Y1−xLax)2O3 (x=0.1, 0.2, 0.3, 0.4) cubic bixbyite solid solutions with crystallites of approximately 10 nm in size was prepared using the polymer complex solution method. Structural analysis was performed using X-ray diffraction measurements, Rietveld full profile refinement, and from Eu3+ luminescence emission. The energy levels of the Eu3+ ion, second order crystal field parameters, and crystal field strength were obtained for all compositions of solid solutions. We show that the crystal field parameters linearly depend on unit cell parameter and that these dependencies may be considered as part of an overall dependence for the entire sesquioxide family.  相似文献   
80.
AlN nanocrystals were prepared in organic solvent at atmospheric pressure and low temperature by the Schlenk technique. Both hexagonal and cubic AlN nanocrystals were obtained. The hexagonal nano-AlN powder possessed a wurtzite structure with a=3.124 Å, c=5.024 Å, the average grain size was about 2 nm. The lattice constant of the cubic nano-AlN was a=9.171 Å, the average grain size was about 4 nm. The structural and optical properties of the obtained AlN were analyzed. The emission related to deep-level defects was investigated by using temperature-dependent photoluminescence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号