首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   304篇
  免费   12篇
  国内免费   2篇
化学   16篇
晶体学   24篇
力学   58篇
数学   7篇
物理学   213篇
  2022年   1篇
  2021年   1篇
  2020年   7篇
  2019年   9篇
  2018年   7篇
  2017年   5篇
  2016年   21篇
  2015年   18篇
  2014年   5篇
  2013年   84篇
  2012年   10篇
  2011年   6篇
  2010年   13篇
  2009年   11篇
  2008年   13篇
  2007年   17篇
  2006年   9篇
  2005年   8篇
  2004年   7篇
  2003年   9篇
  2002年   3篇
  2001年   8篇
  2000年   7篇
  1999年   3篇
  1998年   10篇
  1997年   7篇
  1996年   2篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1979年   1篇
  1976年   1篇
排序方式: 共有318条查询结果,搜索用时 15 毫秒
71.
We study the formation of stationary localized states using the discrete nonlinear Schr?dinger equation in a Cayley tree with connectivity K. Two cases, namely, a dimeric power law nonlinear impurity and a fully nonlinear system are considered. We introduce a transformation which reduces the Cayley tree into an one dimensional chain with a bond defect. The hopping matrix element between the impurity sites is reduced by . The transformed system is also shown to yield tight binding Green's function of the Cayley tree. The dimeric ansatz is used to find the reduced Hamiltonian of the system. Stationary localized states are found from the fixed point equations of the Hamiltonian of the reduced dynamical system. We discuss the existence of different kinds of localized states. We have also analyzed the formation of localized states in one dimensional system with a bond defect and nonlinearity which does not correspond to a Cayley tree. Stability of the states is discussed and stability diagram is presented for few cases. In all cases the total phase diagram for localized states have been presented. Received: 18 September 1997 / Revised: 31 October and 17 november 1997 / Accepted: 19 November 1997  相似文献   
72.
For several years the major focus of material issues in SiC substrates was laid on the reduction of macroscopic defects like polytype inclusions, low angle grain boundaries and micropipes. Although significant improvements have been achieved, there are still shortcomings in material quality that have to be overcome. Since it is clear that dislocations are the main reason for degradation in power devices the prevailing attention has shifted to that field of material research. The aim of our work was to investigate the mechanisms that affect the generation of macroscopic and microscopic defects during sublimation growth. Intense studies were utilized on dislocation and stacking fault formation. For this reason we systematically varied parameters of the growth process and applied several methods for the characterization to evaluate material properties most precisely, e.g. KOH-defect-etching, X-ray-diffraction, electron microscopy and optical microscopy. The investigations were accompanied by failure analysis of devices of the Schottky type. We found out that for the improvement of substrate quality emphasis has to be laid on the reduction of thermoelastic stress in the growing crystal. From results of numerical calculations we were able to derive moderate growth conditions with reduced temperature gradients prevailing during the growth process. As a consequence we succeeded in decreasing the defect concentration. The best value so far achieved for the sum of both BPD and TED was 7×103 cm−2.  相似文献   
73.
Markus Lazar 《Physics letters. A》2010,374(30):3092-3098
We investigate the nonuniform motion of a straight screw dislocation in infinite media in the framework of the translational gauge theory of dislocations. The equations of motion are derived for an arbitrarily moving screw dislocation. The fields of the elastic velocity, elastic distortion, dislocation density and dislocation current surrounding the arbitrarily moving screw dislocation are derived explicitly in the form of integral representations. We calculate the radiation fields and the fields depending on the dislocation velocities.  相似文献   
74.
75.
The activity of a growth centre, consisting of two transversal screw dislocations with equal Burgers' vectors at constant supersaturation and temperature, is theoretically discussed. A non-linear squared differential equation of the type describing oscillations in autonomous systems is obtained and solved approximately and numerically. The correlation theory - experiment is analysed and the applicability of the results is assessed.  相似文献   
76.
Sandwiches made from Fe and Cs films are investigated as a function of the magnetic field and the Cs thickness. Conduction electrons which cross from the Fe to the Cs are marked by a drift velocity component perpendicular to the electric field. The anomalous Hall effect in the Fe provides this “non-diagonal” kick to the electrons that cross from the Fe into the Cs. The ballistic propagation of the conduction electrons can be monitored as a function of the Cs film thickness. The free propagation into the Cs is measured in terms of the non-diagonal conductance Lxy which we denote as the “induced anomalous Hall conductance”L xy 0. For a normal (non-magnetic) metal in contact with Fe, Lxy increases with the thickness of the normal metal until the film thickness exceeds (half) the mean free path of the conduction electrons. For Cs on top of Fe the induced anomalous Hall conductance increases up to a Cs coverage of about 100 A, then, in contrast to other non-magnetic metals, L xy 0 decreases for larger Cs coverage and approaches zero. This behavior cannot be explained with the free electron model. The strange behavior of the induced AHC in Cs films adds an even more challenging mystery to the already poorly understood properties of thin Cs films. These results defy explanation in the free electron model. Received 29 April 1999 and Received in final form 10 July 1999  相似文献   
77.
Sho Kujirai 《哲学杂志》2020,100(16):2106-2127
ABSTRACT

The mechanical properties of metals used as structural materials are significantly affected by hot (or warm) plastic working. Therefore, it is industrially important to predict the microscopic behaviour of materials in the deformation process during heat treatment. In this process, a number of nuclei are generated in the vicinity of grain boundaries owing to thermal fluctuation or the coalescence of subgrains, and dynamic recrystallisation (DRX) occurs along with the deformation. In this paper, we develop a DRX model by coupling a dislocation-based crystal plasticity model and a multi-phase-field (MPF) model through the dislocation density. Then, the temperature dependence of the hardening tendency in the recrystallisation process is introduced into the DRX model. A multiphysics simulation for pure Ni is conducted, and then the validity of the DRX model is investigated by comparing the numerical results of microstructure formation and the nominal stress–strain curve during DRX with experimental results. The obtained results indicate that in the process of DRX, nucleation and grain growth occur mainly around grain boundaries with high dislocation density. As deformation progresses, new dislocations pile up and subsequent nucleation occurs in the recrystallised grains. The influence of such microstructural evolution appears as oscillation in the stress–strain curve. From the stress–strain curves, the temperature dependence in DRX is observed mainly in terms of the yield stress, the hardening ratio, and the change in the hardening tendency after nucleation occurs.  相似文献   
78.
Recent results obtained by 3D discrete Dislocation Dynamics (DD) simulations are reviewed. Firstly, in the case of fatigued AISI 316L stainless steel, it is shown how DD simulations can both explain the formation of persistent slip bands and give a criterion for crack initiation. The same study is performed in the case of precipitate hardened metals where the precipitate size plays a crucial role. Secondly, we show how molecular dynamics (MD) simulations can feed the DD simulations for two applications. The first concerns the modelling of BCC Fe for which the dislocation mobility is derived from MD simulations. The second considers the modelling of irradiated stainless steels (FCC), where MD is used to define the local rules of interactions between dislocations and Frank loops. To cite this article: M.C. Fivel, C. R. Physique 9 (2008).  相似文献   
79.
High speed neutral clusters and mercury droplets from a gas jet impactor are allowed to collide with graphite surfaces. These collisions produce a variety of dislocations. One of the dislocations is a narrow dislocation band with atomic resolution. This band has two partial dislocations on the sides of a central region of abc structure.  相似文献   
80.
A model is developed to investigate the two-dimensional interfacial misfit dislocation networks that follows the original Peierls-Nabarro idea. Structure and energies of heterophase interfaces are considered for the cubic lattice. To examine the energy contribution of misfit dislocations, where interactions between two dislocation arrays are concerned, a generalized stacking fault energy is proposed. Combined with first-principles calculations, we apply this model to a practical metal-ceramic example: the Ag/MgO(100) interface. An important correction to the adhesive energy is proposed in addition to its dislocation structure being confirmed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号