首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   260篇
  免费   1篇
  国内免费   2篇
化学   80篇
晶体学   23篇
力学   26篇
数学   10篇
物理学   124篇
  2024年   3篇
  2023年   18篇
  2022年   4篇
  2021年   4篇
  2020年   4篇
  2019年   4篇
  2018年   2篇
  2017年   4篇
  2016年   5篇
  2015年   6篇
  2014年   13篇
  2013年   10篇
  2012年   6篇
  2011年   13篇
  2010年   18篇
  2009年   15篇
  2008年   16篇
  2007年   17篇
  2006年   18篇
  2005年   7篇
  2004年   7篇
  2003年   9篇
  2002年   5篇
  2001年   4篇
  2000年   3篇
  1999年   6篇
  1998年   14篇
  1997年   2篇
  1996年   4篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1990年   3篇
  1989年   1篇
  1988年   3篇
  1987年   4篇
  1981年   1篇
  1968年   1篇
  1967年   1篇
排序方式: 共有263条查询结果,搜索用时 281 毫秒
261.
Gas-liquid-solid triple-phase interfaces (TPI) are essential for promoting electrochemical CO2 reduction, but it remains challenging to maximize their efficiency while integrating other desirable properties conducive to electrocatalysis. Herein, we report the elaborate design and fabrication of a superhydrophobic, conductive, and hierarchical wire membrane in which core–shell CuO nanospheres, carbon nanotubes (CNT), and polytetrafluoroethylene (PTFE) are integrated into a wire structure (designated as CuO/F/C(w); F, PTFE; C, CNT; w, wire) to maximize their respective functions. The realized architecture allows almost all CuO nanospheres to be exposed with effective TPI and good contact to conductive CNT, thus increasing the local CO2 concentration on the CuO surface and enabling fast electron/mass transfer. As a result, the CuO/F/C(w) membrane attains a Faradaic efficiency of 56.8 % and a partial current density of 68.9 mA cm−2 for multicarbon products at −1.4 V (versus the reversible hydrogen electrode) in the H-type cell, far exceeding 10.1 % and 13.4 mA cm−2 for bare CuO.  相似文献   
262.
The interest in understanding and controlling the properties of two-dimensional materials (2DMs) has fostered in the last years a significant and multidisciplinary research effort involving condensed matter physics and materials science. Although 2DMs have been investigated with a wide set of different experimental and theoretical methodologies, experiments carried out with surface-science based techniques were essential to elucidate many aspects of the properties of this family of materials. In particular, synchrotron-based X-ray photoelectron spectroscopy (XPS) has been playing a central role in casting light on the properties of 2DMs, providing an in-depth and precise characterization of these materials and helping to elucidate many elusive and intricate aspects related to them. XPS was crucial, for example, in understanding the mechanism of growth of several 2DMs at surfaces and in identifying the parameters governing it. Moreover, the chemical sensitivity of this technique is crucial in obtaining knowledge about functionalized 2DMs and in testing their behavior in several model chemical reactions. The achievements accomplished so far in this field have reached a maturity point for which a recap of the milestones is desirable. In this review, we will showcase relevant examples of studies on 2DMs for which synchrotron-based XPS, in combination with other techniques and state-of-the-art theoretical modeling of the electronic structure and of the growth mechanisms, was essential to unravel many aspects connected to the synthesis and properties of 2DMs at surfaces. The results highlighted herein and the methodologies followed to achieve them will serve as a guidance to researchers in testing and comparing their research outcomes and in stimulating further investigations to expand the knowledge of the broad and versatile 2DMs family.  相似文献   
263.
The interfacial stability is highly responsible for the longevity and safety of sodium ion batteries (SIBs). However, the continuous solid-electrolyte interphase(SEI) growth would deteriorate its stability. Essentially, the SEI growth is associated with the electron leakage behavior, yet few efforts have tried to suppress the SEI growth, from the perspective of mitigating electron leakage. Herein, we built two kinds of SEI layers with distinct growth behaviors, via the additive strategy. The SEI physicochemical features (morphology and componential information) and SEI electronic properties (LUMO level, band gap, electron work function) were investigated elaborately. Experimental and calculational analyses showed that, the SEI layer with suppressed growth delivers both the low electron driving force and the high electron insulation ability. Thus, the electron leakage is mitigated, which restrains the continuous SEI growth, and favors the interface stability with enhanced electrochemical performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号