首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   260篇
  免费   1篇
  国内免费   2篇
化学   80篇
晶体学   23篇
力学   26篇
数学   10篇
物理学   124篇
  2024年   3篇
  2023年   18篇
  2022年   4篇
  2021年   4篇
  2020年   4篇
  2019年   4篇
  2018年   2篇
  2017年   4篇
  2016年   5篇
  2015年   6篇
  2014年   13篇
  2013年   10篇
  2012年   6篇
  2011年   13篇
  2010年   18篇
  2009年   15篇
  2008年   16篇
  2007年   17篇
  2006年   18篇
  2005年   7篇
  2004年   7篇
  2003年   9篇
  2002年   5篇
  2001年   4篇
  2000年   3篇
  1999年   6篇
  1998年   14篇
  1997年   2篇
  1996年   4篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1990年   3篇
  1989年   1篇
  1988年   3篇
  1987年   4篇
  1981年   1篇
  1968年   1篇
  1967年   1篇
排序方式: 共有263条查询结果,搜索用时 15 毫秒
101.
The magnetic structure of Cr/V systems is investigated at T = 0 K using real-space tight-binding approach. The magnetism is described in the Hartree-Fock approximation of the Hubbard Hamiltonian and the density of states is calculated within the recursion technique. It is found that the hybridization of the V and Cr d-bands, the change in the lattice constant, the kind and the number of coordination play important roles in determining the magnetism of Cr and V atoms.It is also found, that the magnetic moments of Cr, and the induced magnetic moments on V atoms have the maximum value at (0 0 1) orientation, followed by (1 1 1) orientation, and the least at (0 1 1) orientation, due to the coordination.  相似文献   
102.
We have evaporated Ni on the pentagonal surface of an icosahedral Al-Pd-Mn quasicrystal kept at room temperature. At the initial stage of growth, Ni intermixes with the substrate surface. Subsequently, Al from the quasicrystal matrix migrates to growing layers. The modified chemical composition in an initially icosahedral region near the surface induces a structural transformation. An Al-Pd-Mn alloy is formed which consists of five cubic domains with dimensions in the nm-range exposing their (1 1 0) faces parallel to the surface. These domains are azimuthally rotated by 2π/5 with respect to each other and aligned with symmetry directions of the icosahedral substrate. Al-Mn-Ni, Al-Ni, and Ni overlayers adopt both structure and orientation of these domains which stabilises Ni in a novel body-centred cubic phase. Ni-rich overlayers exhibit out-of-plane magnetic ordering.  相似文献   
103.
We study the interfaces of ground states of ferromagnetic Ising models with external fields. We show that, if the coefficients of the interaction and the magnetic field are periodic, the magnetic field has zero flux over a period and is small enough, then for every plane, we can find a ground state whose interface lies at a bounded distance of the plane. This bound on the width of the interface can be chosen independent of the plane. We also study the average energy of the plane-like interfaces as a function of the direction. We show that there is a well defined thermodynamic limit for the energy of the interface and that it enjoys several convexity properties.  相似文献   
104.
The enthalpies of solution of pure silver halides AgCl and AgI and a composite material with molar composition 0.5 AgCl-0.5 AgI were measured at 298 K in a mixture of Na2S2O3 (1 M) and NH4OH (1 M). X-ray diffraction patterns showed that the composite material contained the metastable γ-AgI phase; different mechanisms for its stabilization were discussed. The phase transition enthalpies of AgI modifications and the enthalpy of formation of the composite material were deduced from the measurements. The latter could be related to a change of interfacial enthalpies.  相似文献   
105.
Electronic structure of the Ba/3C–SiC(111) interface has been detailed studied in situ in an ultrahigh vacuum using synchrotron radiation photoemission spectroscopy with photon energies in the range of 100–450 eV. The 3C–SiC(111) samples were grown by a new method of epitaxy of low-defect unstressed nanoscaled silicon carbide films on silicon substrates. Valence band photoemission and both the Si 2p, C 1s core level spectra have been investigated as a function of Ba submonolayer coverage. Under Ba adsorption two induced surface bands are found at binding energies of 2 eV and 6 eV. It is obtained that Ba/3C–SiC(111) interface can be characterized as metallic-like. Modification of both the Si 2p and C 1s surface-related components were ascertained and shown to be provided by redistribution effect of electron density between Ba adatoms and both the Si surface and C interface atoms.  相似文献   
106.
Unstable cathode-electrolyte and/or anode-electrolyte interface in polymer-based sodium-ion batteries (SIBs) will deteriorate their cycle performance. Herein, a unique solvated double-layer quasi-solid polymer electrolyte (SDL-QSPE) with high Na+ ion conductivity is designed to simultaneously improve stability on both cathode and anode sides. Different functional fillers are solvated with plasticizers to improve Na+ conductivity and thermal stability. The SDL-QSPE is laminated by cathode- and anode-facing polymer electrolyte to meet the independent interfacial requirements of the two electrodes. The interfacial evolution is elucidated by theoretical calculations and 3D X-ray microtomography analysis. The Na0.67Mn2/3Ni1/3O2|SDL-QSPE|Na batteries exhibit 80.4 mAh g−1 after 400 cycles at 1 C with the Coulombic efficiency close to 100 %, which significantly outperforms those batteries using the monolayer-structured QSPE.  相似文献   
107.
Ether electrolytes are promising for lithium metal batteries. Despite the intensive research in recent years, most state-of-the-art ether electrolytes still cannot form reliable electrode-electrolyte interfaces in NCM811-Li batteries at diluted concentrations, especially in those operating at elevated temperatures. We report a simple but effective strategy to break this bottleneck and stabilize interfaces in high-temperature NCM811-Li batteries in ether electrolytes. We propose that by gradually extending the terminal groups of glycol diethers from methyl groups to n-butyl groups, the comprehensive stability of ether electrolytes is improved. An anion-dominated solvation structure is realized at a concentration of 1 M. Accordingly, the electrode-electrolyte interactions are suppressed, and a thinner, denser, and more inorganic-rich solid- /cathode-electrolyte interface is achieved. Additionally, the surface phase transition and structural degradation of NCM811 cathode are alleviated. Consequently, in the ethylene glycol dibutyl ether-based electrolyte, the Coulombic efficiency for Li−Cu cells working at 60 °C is boosted to 99.41 % with a cycling life of over 200 cycles. The lifespan of high-temperature NCM811-Li cells is prolonged by more than 400 % with a stable average Coulombic efficiency of 99.77 % at quasi-practical conditions of 50 μm Li, lean electrolyte of 10 μL mAh−1, and medium-high cathode loading of >2.2 mAh cm−2.  相似文献   
108.
The nature of the hydrophobicity found in rare-earth oxides is intriguing. The CeO2 (100) surface, despite its strongly hydrophilic nature, exhibits hydrophobic behaviour when immersed in water. In order to understand this puzzling and counter-intuitive effect we performed a detailed analysis of the confined water structure and dynamics. We report here an ab-initio molecular dynamics simulation (AIMD) study which demonstrates that the first adsorbed water layer, in immediate contact with the hydroxylated CeO2 surface, generates a hydrophobic interface with respect to the rest of the liquid water. The hydrophobicity is manifested in several ways: a considerable diffusion enhancement of the confined liquid water as compared with bulk water at the same thermodynamic condition, a weak adhesion energy and few H-bonds above the hydrophobic water layer, which may also sustain a water droplet. These findings introduce a new concept in water/rare-earth oxide interfaces: hydrophobicity mediated by specific water patterns on a hydrophilic surface.  相似文献   
109.
Micro- and nanotechnology can provide us with many tools for the production, study and detection of colloidal and interfacial systems. In multiphase flow in micro- and nanochannels several immiscible fluids will be separated from each other by flexible fluidic interfaces. The multiphase coexistence and the small-volume confinement provide many attractive characteristics. Multiphase flow in microfluidic systems shows a complicated behavior but has many practical uses compared to a single-phase flow. In this paper, we discuss the methods of controlling multiphase flow to generate either micro- or nano-droplets (or bubbles) or stable stratified interfaces between fluidic phases. Furthermore, applications of the droplets and interfaces in microchannels are summarized.  相似文献   
110.
Xiao Gong  Lei Li 《中国化学快报》2017,28(11):2045-2052
Many important applications of room temperature ionic liquids(RTILs), e.g., lubrication, energy storage and catalysis, involve RTILs confined to solid surfaces. In order to optimize the performance, it is critical to understand the wettability of nanometer-thick RTILs on solid surfaces. In this review, the recent progress in this filed is presented. First, the macroscopic wettability of RTILs on solids will be discussed briefly.Afterwards, the wetting of nanometer-thick RTILs will be discussed with the emphasis on RTIL/mica and RTIL/graphite interfaces since mica and graphite not only are mostly studied but also have important real-life applications. For RTIL/mica interface, the extended layering that promotes the wetting has been extensively reported and it is generally accepted that the electrostatic interaction at the RTIL/mica interface is the key. However, recent works from others and us highlight the unexpected effect of water:Water enables ion exchange between K+and the cations of RTILs on the mica surface and thus triggers the ordered packing of cations/anions in RTILs, resulting in extended layering. Different from mica, there is no electrical charge on the graphite surface. Interestingly, previous reports showed inconsistent results on the wettability of RTILs on graphite. Recent research from others and us suggested that π-π~+stacking between sp~2 carbon and the imidazoliumcation in the RTILs is the key to the extended layering and enhanced wettability of RTILs. Lastly, the future research directions will be briefly discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号