首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   11篇
化学   2篇
晶体学   11篇
物理学   114篇
  2014年   1篇
  2011年   1篇
  2010年   2篇
  2009年   28篇
  2008年   20篇
  2007年   19篇
  2006年   15篇
  2005年   2篇
  2004年   3篇
  2003年   6篇
  2002年   4篇
  2001年   2篇
  2000年   5篇
  1999年   3篇
  1998年   3篇
  1997年   5篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1988年   1篇
排序方式: 共有127条查询结果,搜索用时 15 毫秒
71.
Nanocrystalline thin films of complex oxides such as BaTiO3 and LaFeO3 were prepared by pulsed laser ablation without substrate heating. Targets under various Ar pressures were irradiated using an ArF excimer laser. The off-axis configuration of targets and substrates was used to synthesize the films. The crystallinity and chemical composition of the deposited films were strongly dependent on the processing Ar gas pressure. In case of BaTiO3, the film deposited at 10 Pa was a single phase of BaTiO3 with a crystallite size around 7.2 nm. With increasing Ar pressure to 200 Pa, XRD peaks of BaTiO3 as well as BaCO3 were observed. The by-products could be due to reaction with carbon dioxide in air after taking the sample out of the chamber. For LaFeO3, the films deposited under 50 to 200 Pa had a single phase with a crystallite size below 10 nm. When the Ar pressure exceeded 100 Pa, the crystallite size tended to decrease for both BaTiO3 and LaFeO3, which could be due to formation of aggregated nanoparticles. Below 10 Pa, oxygen deficiency was observed. Over 50 Pa, the atomic concentration of all the constituent elements was almost constant, especially the [Ba]/[Ti] and [La]/[Fe] ratios, which were nearly unity. Received: 19 June 2002 / Accepted: 24 June 2002 / Published online: 22 November 2002 RID="*" ID="*"Corresponding author. Fax: +81-298/61-6355, E-mail: yoon-jw@aist.go.jp  相似文献   
72.
Microcrystalline silicon‐carbide (μc‐SiC:H) films were prepared using hot wire chemical vapor deposition at low substrate temperature. The μc‐SiC:H films were employed as window layers in microcrystalline silicon (μc‐Si:H) solar cells. The short‐circuit current density (JSC) in these n‐side illuminated n–i–p cells increases with increasing the deposition time tW of the μc‐SiC:H window layer from 5 min to 60 min. The enhanced JSC is attributed to both the high transparency and an anti‐reflection effect of the μc‐SiC:H window layer. Using these favourable optical properties of the μc‐SiC:H window layer in μc‐Si:H solar cells, a JSC value of 23.8 mA/cm2 and cell efficiencies above 8.0% were achieved with an absorber layer thickness of 1 μm and a Ag back reflector. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
73.
The effect of an external magnetic field on the L3 subshell fluorescence yields (ω3 ) and level widths ($\Gamma_{L_3}$) for paramagnetic Ta, W, Tl, Th and U have been investigated using the 59.54 keV incident photon energy in the external magnetic field of intensities ±0.60 T. L3 X-ray fluorescence cross sections ($\sigma_{L_3}^{X}$) have been measured for the same elements. The measured ω 3, $\Gamma_{L_3} $ and $ \sigma_{L_3}^X$ values for B = 0 are in good agreement with the theoretical values. It was observed that the values of $\sigma_{L_3}^X$ and ω3 with the applied magnitude of the magnetic field in both directions show a decreasing trend for paramagnetic Ta, W, Tl, Th and U. Furthermore, in the presence of an external magnetic field, the values of $\Gamma_{L_3}$ show an increasing trend for the same elements. The results show that the atomic parameters such as spectral linewidth, radiation rates, photoionization cross section and fluorescence yield can change when the irradiation is conducted in a magnetic field.  相似文献   
74.
We report on the synthesis and low temperature transport of Mg2Ge1–y Sby with 0 ≤ y ≤ 0.33. In these materials Sb substitutes for Ge in the antifluorite structure. Electrical and thermal transport measurements indicate that as the Sb content increases, vacancies are formed on the Mg sites thereby contributing to variations in the transport properties. With increasing Sb content both the absolute Seebeck coefficient and electrical resistivity first decrease and then increase, while the thermal conductivity decreases monotonically. Hall measurements indicate this tendency is associated with vacancy formation at higher Sb concentrations. The lattice thermal conductivity is fitted using the Debye approximation in order to elucidate the effect of alloying. We discuss these results in terms of potential for thermoelectric applications. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
75.
76.
Dispersed fluorescence from fragments formed after the de-excitation of the 1s-1π* resonances of N*O and NO* has been measured in the spectral range of 118–142 nm. This range is dominated by lines of atomic nitrogen and oxygen fragments and by the bands in the NO+ ion which result from the participator Auger decay of the 1s-1π* resonances. Ab-initio calculations of the transition probabilities between vibrational levels during the reaction NO N*O ⇒ NO were used to explain the observed intensity dependence for the fluorescence bands on the exciting-photon energy across the resonances and on both v and v′′ vibrational quantum numbers. The multiplet structure of the 1s-1π* resonance and lifetime vibrational interference explain the observed exciting-photon energy dependence of the fluorescence intensity. A strong spin-orbit coupling between singlet and triplet states of NO+ is proposed to reduce additional cascade population of the state via radiative transitions from the and states and to explain remaining differences between measured and calculated integral fluorescence intensities.  相似文献   
77.
A detailed study of magnetic properties of cobaltite YBaCo2O5.5 has been performed in high (up to 35 T) magnetic fields and under hydrostatic pressure up to 0.8 GPa. The temperatures of paramagnet-ferromagnet (PM-FM) and ferromagnet-antiferromagnet (FM-AF) phase transitions and their pressure derivatives have been determined. It has been revealed that in the compound with yttrium, in contrast to those with magnetic rare earth atoms, the AF-FM field-induced magnetic phase transition is accompanied by a considerable field hysteresis below 240 K, and the magnetic field of 35 T is not sufficient to complete this transition at low temperatures. The hysteresis value depends on the magnetic field sweep rate, which considered as an evidence of magnetic viscosity that is especially strong in the region of coexistence of the FM and AF phases. High values of susceptibility for the field-induced FM phase show that Co spin state in these compounds changes in strong magnetic field.  相似文献   
78.
S. Parida 《Physics letters. A》2009,373(21):1852-1855
We theoretically show that the process of inner-shell photoionization in an atom A, followed by the spontaneous sequential emission of two Auger electrons, produces various kinds of spin-entangled states of three flying electronic qubits. All properties of these states are completely pre-determined by the total spin quantum numbers of the electronic states of four atomic species (i.e., A, A+, A2+, A3+) participating in this process in the Russell-Saunders coupling. These tripartite states are readily characterized experimentally by measuring only energies of the three emitted electrons, without requiring any entanglement witness or other such protocols.  相似文献   
79.
Five thin film photovoltaic modules were deployed outdoors under open circuit conditions after a thorough indoor evaluation. Two technology types were investigated: amorphous silicon (a-Si:H) and copper indium gallium diselenide (CIGS). Two 14 W a-Si:H modules, labelled Si-1 and Si-2, were investigated. Both exhibited degradation, initially due to the well-known light-induced degradation described by Staebler and Wronski [Applied Physics Letters 31 (4) (1977) 292], and thereafter due to other degradation modes such as cell degradation. The various degradation modes contributing to the degradation of the a-Si:H modules will be discussed. The initial maximum power output (PMAX) of Si-1 was 9.92 W, with the initial light-induced degradation for Si-1 ∼30% and a total degradation of ∼42%. For Si-2 the initial PMAX was 7.93 W, with initial light-induced degradation of ∼10% and a total degradation of ∼17%. Three CIGS modules were investigated: two 20 W modules labelled CIGS-1 and CIGS-2, and a 40 W module labelled CIGS-3. CIGS-2 exhibited stable performance while CIGS-1 and CIGS-3 exhibited degradation. CIGS is known to be stable over long periods of time, and thus the possible reasons for the degradation of the two modules are discussed.  相似文献   
80.
The effect of a dc bias field on the diffuse phase transition and nonlinear dielectric properties of sol-gel derived Ba(Zr0.2Ti0.8)O3 (BZT) ceramics are investigated. Diffuse phase transitions were observed in BZT ceramics and the Curie–Weiss exponent (CWE) was γ∼2.0. The dielectric constant versus temperature characteristics and the γ in the modified Curie–Weiss law, ε −1=ε m −1[1+(TT m ) γ /C1](1≤γ≤2), as a function of the dc bias field was obtained for BZT ceramics. The results indicated that γ is a function of dc bias field, and the γ value decreased from 2.04 to 1.73 with dc bias field increasing from 0 to 20 kV/cm. The dielectric constant decreases with increasing dc bias field, indicating a field-induced phase transition. The dc bias field has a strong effect on the position of the dielectric peak and affects the magnitude of the dielectric properties over a rather wide temperature range. The peak temperature of the dielectric loss does not coincide with the dielectric peak and an obvious minimum value for the dielectric loss at the temperature of the dielectric peaks is observed. At room temperature, 300 K, the high tunability (K=80%), the low loss tangent (≈0.01) and the large FOM (74), clearly imply that these ceramics are promising materials for tunable capacitor-device applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号