首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1029篇
  免费   122篇
  国内免费   16篇
化学   316篇
晶体学   110篇
力学   13篇
综合类   1篇
数学   8篇
物理学   719篇
  2024年   1篇
  2023年   3篇
  2022年   9篇
  2021年   9篇
  2020年   15篇
  2019年   10篇
  2018年   18篇
  2017年   32篇
  2016年   40篇
  2015年   14篇
  2014年   15篇
  2013年   115篇
  2012年   39篇
  2011年   123篇
  2010年   55篇
  2009年   71篇
  2008年   58篇
  2007年   70篇
  2006年   57篇
  2005年   47篇
  2004年   41篇
  2003年   32篇
  2002年   37篇
  2001年   27篇
  2000年   32篇
  1999年   38篇
  1998年   27篇
  1997年   15篇
  1996年   10篇
  1995年   16篇
  1994年   18篇
  1993年   10篇
  1992年   6篇
  1991年   6篇
  1990年   8篇
  1989年   3篇
  1988年   5篇
  1987年   5篇
  1986年   5篇
  1985年   4篇
  1984年   8篇
  1983年   2篇
  1982年   4篇
  1981年   3篇
  1980年   1篇
  1978年   1篇
  1971年   1篇
  1966年   1篇
排序方式: 共有1167条查询结果,搜索用时 187 毫秒
41.
The local distortions and electron paramagnetic resonance parameters for Cu2+ in the mixed alkali borate glasses xNa2O‐(30–x)K2O‐70B2O3 (5 ≤ x ≤ 25 mol%) are theoretically studied with distinct modifier Na2O compositions x. Owing to the Jahn–Teller effect, the octahedral [CuO6]10− clusters show significant tetragonal elongation ratios p ~19% along the C4 axis. With the increase of composition x, the cubic field parameter Dq and the orbital reduction factor k exhibit linearly and quasi‐linearly decreasing tendencies, respectively, whereas the relative tetragonal elongation ratio p has quasi‐linearly increasing rule with some fluctuations, leading to the minima of g factors at x = 10 mol%. The composition dependences of the optical spectra and the electron paramagnetic resonance parameters are suitably reproduced by the linear or quasi‐linear relationships of the relevant quantities (i.e., Dq, k, and p) with x. The above composition dependences are analyzed from mixed alkali effect, which brings forward the modifications of the local crystal‐fields and the electronic cloud distribution around Cu2+ with the variation of the composition of Na2O.  相似文献   
42.
Different concentrations of Ho3+-doped lead borate titanate aluminum fluoride (LBTAFHo) glasses with chemical composition of PbO-H3BO3-TiO2-AlF3-Ho2O3 were prepared by the melt quenching method. The spectral properties were investigated using the absorption, emission and decay measurements. The experimental oscillator strengths were calculated from the area under the absorption bands. Applying Judd-Ofelt theory, the intensity parameters (Ωλ=2, 4, 6) were calculated, by the least square fit approach from which the radiative transition rates, luminescence branching ratios and radiative decay times were determined. The photoluminescence spectra revealed the quenching of luminescence intensity beyond 1.0 mol% of Ho3+ ion concentration. To investigate the luminescence potentiality of 5F45I8 emission level, the effective bandwidth and the stimulated emission cross-section were determined. The quenching in experimental decay time is attributed to the resonance energy transfer among the excited Ho3+ ions.  相似文献   
43.
Lead scandium phosphate glasses (PbO-Sc2O3-P2O5) containing different concentrations of tungsten oxide (WO3) ranging from 0 to 5 mol% were prepared. A number of studies, viz. differential thermal analysis (DTA), infrared spectra, optical absorption, and electron spin resonance (ESR) spectra, have been carried out. The results of DTA indicated the highest glass forming ability for the glass containing 5 mol% of WO3. The results of spectroscopic studies have been analyzed in light of different oxidation states of tungsten ions.  相似文献   
44.
We have studied the influence of multiple carbon treatments on the properties of silica porous glasses. Each step of each carbon treatment started with filling the voids of porous glass with carbon. During the following anneal carbon interacted with the walls of the voids. It was shown that low dimensional silicon clusters were formed inside the voids as a result of this reaction. In the experiments the photoluminescence spectra and conductivity of carbon-processed specimens were measured. The size-distribution of voids in porous glasses was calculated from absorption—desorption isotherms. An original technique was proposed that allowed to obtain the size-distribution of silicon clusters from the positions of peaks in the photoluminescence spectra. Correlation between the photoluminescence intensity and the sizes of pores was revealed. The observed oscillations in the shapes of the photoluminescence spectra in subsequent cycles of carbon treatment are explained by changes of the number of clusters corresponding to definite peaks in the size distribution spectra.  相似文献   
45.
《中国物理 B》2021,30(6):66301-066301
Dynamics of hydrogen doped Cu_(50) Zr_(50) glass-forming liquids are investigated by using the newly developed modified embedded atomic method(MEAM) potential based on molecular dynamics simulations. We find that the doping of hydrogen atoms slows down the relaxation dynamics, reduces the fragility of supercooled melts, and promotes the occurrence of glass transitions. The dynamic slowdown is suggested to be closely related to the effect of hydrogen atoms on locally ordered structure of melts. With increasing concentration of hydrogen, the five-fold symmetry associated with Cu-and Zr-centered polyhedrons is lowered, on the other hand, the local order featuring metal hydrides is enhanced. The latter dominates the dynamic behaviors of glass-forming liquids, especially for Zr atoms, and results in the dynamic slowdown.  相似文献   
46.
The effect of laser irradiation on the optical properties of thermally evaporated Se100?x Te x (x=8, 12, 16) chalcogenide thin films has been studied. The result shows that the irradiation causes a shift in the optical gap. The results have been analyzed on the basis of laser irradiation-induced defects in the film. The width of the tail of localized state in the band gap has been evaluated using the Urbach edge method. As the irradiation time increases, the values of the optical energy gap for all compositions decrease, while tail energy width increases. It is also observed that the optical energy gap decreases with increasing Te content in the alloy. These changes are a consequence of an increment in disorder produced by laser irradiation in the amorphous structure of thin film.  相似文献   
47.
Phosphate glasses with compositions of 44P2O5 + 17K2O + 9Al2O3 + (30 − x)CaF2 + xDy2O3 (x = 0.05, 0.1, 0.5, 1.0, 2.0, 3.0 and 4.0 mol %) were prepared and characterized by X-ray diffraction (XRD), differential thermal analysis (DTA), Fourier transform infrared (FTIR), optical absorption, emission and decay measurements. The observed absorption bands were analyzed by using the free-ion Hamiltonian (HFI) model. The Judd–Ofelt (JO) analysis has been performed and the intensity parameters (Ωλ, λ = 2, 4, 6) were evaluated in order to predict the radiative properties of the excited states. From the emission spectra, the effective band widths (Δλeff), stimulated emission cross-sections (σ(λp)), yellow to blue (Y/B) intensity ratios and chromaticity color coordinates (x, y) have been determined. The fluorescence decays from the 4F9/2 level of Dy3+ ions were measured by monitoring the intense 4F9/2 → 6H15/2 transition (486 nm). The experimental lifetimes (τexp) are found to decrease with the increase of Dy3+ ions concentration due to the quenching process. The decay curves are perfectly single exponential at lower concentrations and gradually changes to non-exponential for higher concentrations. The non-exponential decay curves are well fitted to the Inokuti–Hirayama (IH) model for S = 6, which indicates that the energy transfer between the donor and acceptor is of dipole–dipole type. The systematic analysis of revealed that the energy transfer mechanism strongly depends on Dy3+ ions concentration and the host glass composition.  相似文献   
48.
A new homologous series of achiral banana-shaped mesogens ('Dn') has been synthesized and studied by the classical techniques (optical microscopy, differential scanning calorimetry, X-ray diffraction, miscibility studies and electro-optic investigations). The short homologues (D6-D8) exhibit a two-dimensional phase 'B1x' different from a B1 phase with a rectangular lattice. The longer homologues (D9-D14) present a mesophase which displays the defects of the B7 phase of the PIMB-NO2 compounds. Nevertheless the D9-D14 mesophase is not miscible with the B7 phase, and contrary to B7, exhibits a bistable behaviour ('ferroelectric' type) suggesting at least a B7 variant.  相似文献   
49.
The present investigation reports the effect of influence of aluminum ions on radiation damage of strontium borosilicate glasses studied by means of spectroscopic (viz., optical absorption (OA), infrared and Raman spectra). The composition of the glasses chosen for the study is 40SrO–xAl2O3–(15-x) B2O3–40SiO2 (x = 5, 7.5, 10), all in mol%. The glasses were synthesized by conventional melt quenching method. Later, the samples were exposed to gamma (γ) radiation dose of strengths 10 kGy and 30 kGy with a dose rate of 1.5 Gy/s using 60Co as radiation source. The infrared spectra (IR), Raman spectra and optical absorption (OA) spectra of the samples were recorded at ambient temperature before and after irradiation. The OA spectra of the pre-irradiated samples do not exhibit any absorption bands in the UV–vis regions and IR and Raman spectra exhibited conventional vibrational bands due to different borate, silicate AlO4 and AlO6 structural units. The OA spectra of post irradiated samples exhibited a broad absorption band in the wavelength region 600–750 nm; it is attributed to electron trapped color centers. The intensity of this peak is observed to increase with increase of the γ-ray dose. Considerable changes in the intensities of various bands in the IR and Raman spectra were also observed. The changes were explained based on structural modifications taking place in the glass network due to γ-ray irradiation and finally it is concluded that the glasses mixed with 10.0 mol% of Al2O3 are relatively more radiation resistant.  相似文献   
50.
The effect of chemical composition on the Raman spectra of a series of natural calcalkaline silicate glasses has been quantified by performing electron microprobe analyses and obtaining Raman spectra on glassy filaments (~450 µm) derived from a magma mingling experiment. The results provide a robust compositionally‐dependent database for the Raman spectra of natural silicate glasses along the calcalkaline series. An empirical model based on both the acquired Raman spectra and an ideal mixing equation between calcalkaline basaltic and rhyolitic end‐members is constructed enabling the estimation of the chemical composition and degree of polymerization of silicate glasses using Raman spectra. The model is relatively insensitive to acquisition conditions and has been validated using the MPI‐DING geochemical standard glasses 1 as well as further samples. The methods and model developed here offer several advantages compared with other analytical and spectroscopic methods such as infrared spectroscopy, X‐ray fluorescence spectroscopy, electron and ion microprobe analyses, inasmuch as Raman spectroscopy can be performed with a high spatial resolution (1 µm2) without the need for any sample preparation as a nondestructive technique. This study represents an advance in efforts to provide the first database of Raman spectra for natural silicate glasses and yields a new approach for the treatment of Raman spectra, which allows us to extract approximate information about the chemical composition of natural silicate glasses using Raman spectroscopy. We anticipate its application in handheld in situ terrestrial field studies of silicate glasses under extreme conditions (e.g. extraterrestrial and submarine environments). © 2015 The Authors Journal of Raman Spectroscopy Published by John Wiley & Sons Ltd  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号