首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   1篇
  国内免费   6篇
化学   65篇
晶体学   6篇
力学   1篇
物理学   11篇
  2021年   1篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   7篇
  2012年   1篇
  2011年   5篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   3篇
  2006年   7篇
  2005年   4篇
  2004年   9篇
  2003年   7篇
  2002年   2篇
  2001年   6篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1988年   2篇
排序方式: 共有83条查询结果,搜索用时 15 毫秒
71.
Mechanism of the lamellar crystalline phase formation of distearoyl‐phosphatidylethanolamine (DSPE) dispersed in excess glycerol has been examined by differential scanning calorimetry. It was found that transformation of liquid‐crystal phase to a crystalline phase must be mediated by a lamellar‐gel phase. Further examination of the kinetic phase behavior using Avrami and Tobin models suggested a single dimensional growing pattern and a three‐step mechanism of the crystallization, consisting of nucleation, normal growth, and restricted growth.  相似文献   
72.
The crystallization of polymers in cylindrical geometries is important as interest in polymer nanowires and nanostructures grows. Here, semicrystalline isotactic poly(propylene) (iPP) is shown to crystallize in a homogeneous, low‐dimensional fashion when confined in cylindrical pores as small as 15 nm. A strong dependence on pore diameter is demonstrated. Isothermal crystallization studies suggest a reduced Avrami exponent as pore diameter decreases and as crystallization time increases. Complementary X‐ray diffraction with tilt (texture analysis) reveals one‐dimensional ordering of iPP crystals within pores of 40 nm diameter or less in which crystals preferentially orient, perpendicular to the pore wall. These findings demonstrate that the origin of this orientation is related to the impingement of crystals against the pore wall, thus “freezing out” polymer crystallizing in nonpreferred directions. These results show that curvature‐directed crystallization is one potential means to control a polymer's crystallization rate and orientation. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1412–1419  相似文献   
73.
74.
The technique of time-resolved small-angle x-ray scattering is used to monitor the disorder-order transformation occurring in asymmetric, diblock styrene-butadiene. A rapid thermal quench is applied to drive the system from its initial high-temperature disordered state to a low-temperature ordered structure, a body-centered cubic lattice of styrene spheres characterized by a series of concentric Debye rings in the two-dimensional scattering profile. At relatively late times in the microdomain ordering process, the uniform Debye rings were seen to rapidly develop nonuniformities indicating the existence of preferred orientation with a fiber texture, the 110] axis of the bcc structure defining the fiber axis. These results are interpreted in the context of a developing transformation strain energy during the ordering process and shown to be consistent with accompanying changes in lattice spacing as well as earlier observations of apparent fluctuations in the ordering process.  相似文献   
75.
Melt crystallization behaviors of poly(ethylene terephthalate) (PET) and poly(ethylene terephthalate‐co‐isophthalate) (PETI) containing 2 and 12 mol % of noncrystallizable isophthalate components were investigated. Differential scanning calorimetry (DSC) isothermal results revealed that the introduction of 2 mol % isophthalate into PET caused a change of the crystal growth process from a two‐dimensional to a three‐dimensional spherulitic growth. The addition of more isophthalate up to 12 mol % into the PET structure induced a change in the crystal growth from a three‐dimensional to a two‐dimensional crystal growth. DSC heating scans after completion of isothermal crystallization at various Tc's showed three melting endotherms for PET and four melting endotherms for PETI‐2 and PETI‐12. The presence of an additional melting endotherm is attributed to the melting of copolyester crystallite composed of ethylene glycol, tere‐phthalate, and isophthalate (IPA) or the melting of molecular chains near IPA formed by melting the secondary crystallite Tm (I) and then recrystallizing during heating. Analyses of both Avrami and Lauritzen‐Hoffman equations revealed that PETI containing 2 mol % of isophthalate had the highest Avrami exponent n, growth rate constant Go, and product of lateral and end surface free energies σσe. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2515–2524, 2000  相似文献   
76.
The isothermal crystallization kinetics of poly(ethylene oxide) (PEO) block in two poly(ethylene terephthalate) (PET)–PEO segmented copolymers was studied with differential scanning calorimetry. The Avrami equation failed to describe the overall crystallization process, but a modified Avrami equation, the Q equation, did. The crystallizability of the PET block and the different lengths of the PEO block exerted strong influences on the crystallization process, the crystallinity, and the final morphology of the PEO block. The mechanism of nucleation and the growth dimension of the PEO block were different because of the crystallizability of the PET block and the compositional heterogeneity. The crystallization of the PEO block was physically constrained by the microstructure of the PET crystalline phase, which resulted in a lower crystallization rate. However, this influence became weak with the increase in the soft‐block length. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 3230–3238, 2000  相似文献   
77.
The purpose of this article is to develop a mathematical model that describes photocure and photopolymerization kinetics. This model is neither wholly phenomenological nor mechanistic, but contains elements of both. We draw an analogy between the classical Avrami approach for first-order phase transformations and the kinetic phenomena that occur during photocuring, and take into account cure inhibition due to a decrease in mobility of the constituents. The result is an explicit algebraic two-parameter expression for the extent of cure versus time. More importantly, the two parameters have physical significance, and to some extent can be predicted a priori. The model is compared to three sets of unrelated data, and excellent agreement is obtained, except for part of the data at the onset of the reactions. Physical insight obtained by comparing our theory with experiments supports the existence of preferred sites for initiating the reaction, and indicates that irradiation is the rate-limiting step in the overall cure process in the limit of small irradiation intensities. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2887–2894, 1998  相似文献   
78.
本工作以电镜和线膨胀仪研究了丁二烯(B)和异戊二烯(IP)无规共聚物(BIC)的结晶行为.发现在丁二烯链节上引入少量的异戊二烯链节,可使BIC的结晶形态、结晶度、结晶机理发生明显的变化,并根据实验事实,对Avrami方程进行了修正.  相似文献   
79.
The morphology of crystals, isothermal and non-isothermal crystallization of poly(methylene terephthalate) (PMT) have been investigated by using polarized optical microscopy and differential scanning calorimeter (DSC). The POM photographs displayed only several Maltese cross at the beginning short time of crystallization indicating that some spherulites had been formed. The crystal cell belonged to the Triclinic crystal systems and the cell dimensions were calculated from the WAXD pattern. The commonly used Avrami equation and that modified by Jeziorny were used, respectively, to fit the primary stage of isothermal and non-isothermal crystallization. The Ozawa theory was also used to analyze the primary stage of non-isothermal crystallization. The Avrami exponents n were evaluated to be in the range of 2-3 for isothermal crystallization, and 3-4 for non-isothermal crystallization. The Ozawa exponents m were evaluated to be in the range of 1-3 for non-isothermal crystallization in the range of 135-155 °C. The crystallization activation energy was calculated to be −78.8 kJ/mol and −94.5 kJ/mol, respectively, for the isothermal and non-isothermal crystallization processes by the Arrhenius’ formula and the Kissinger’s methods.  相似文献   
80.
Isothermal crystallization process of polymers in a confined volume was simulated in the case of instantaneous nucleation by use of the Monte Carlo method. The influence of sample thickness on some kinetic parameters of crystallization was quantitatively evaluated. It was found that there was a critical thickness value. Influence of thickness on the crystallization behavior was only found for samples of thickness near and less than the critical value. For thick samples the Avrami plot showed straight lines with a turning point at the late stage of crystallization due to the secondary crystallization. When the thickness was near or less than the critical value a primary turning point appeared in the Avrami plot at the very beginning of the crystallization process. A model was proposed to explain the mechanism of this phenomenon. According to this model the critical thickness value is related to the nucleation density or the average distance between adjacent nuclei, and the primary turning point is an indication of a transformation of crystal growth geometry from a three-dimensional mode to a two-dimensional one. Analysis of experimental results of PEO isothermally crystallized at 53.5℃ was consistent with the proposed model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号