首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   207篇
  免费   42篇
  国内免费   344篇
化学   533篇
晶体学   28篇
力学   1篇
综合类   5篇
数学   2篇
物理学   24篇
  2024年   9篇
  2023年   34篇
  2022年   35篇
  2021年   61篇
  2020年   35篇
  2019年   28篇
  2018年   24篇
  2017年   27篇
  2016年   28篇
  2015年   28篇
  2014年   31篇
  2013年   48篇
  2012年   22篇
  2011年   25篇
  2010年   13篇
  2009年   20篇
  2008年   8篇
  2007年   21篇
  2006年   16篇
  2005年   10篇
  2004年   8篇
  2003年   14篇
  2002年   11篇
  2001年   13篇
  2000年   6篇
  1999年   4篇
  1998年   6篇
  1997年   6篇
  1994年   1篇
  1993年   1篇
排序方式: 共有593条查询结果,搜索用时 15 毫秒
581.
以氢气泡为动力学模板电沉积获得多孔铜, 并通过热处理增强其结构稳定性. 进一步将多孔铜作为基底通过电沉积制备Cu-Sn合金负极. XRD结果给出其组成为Cu6Sn5合金, 扫描电子显微镜(SEM)观察到Cu6Sn5合金电极为三维(3D)多孔结构. 充放电结果指出, Cu6Sn5合金电极具有较好的充放电性能, 其首次放电(嵌锂)和充电(脱锂)容量分别为735和571 mAh·g-1, 并且具有较好的容量保持率. 运用电化学阻抗谱研究了Cu6Sn5合金电极在商业电解液中的界面特性.  相似文献   
582.
选用粒径为3μm的球状铝粉作为锂离子电池负极材料,采用小分子有机材料3,4,9,10-茈四酸酐作为改性剂,通过固相法在不同温度下合成两种Al-C复合材料,利用元素分析、XRD、SEM、粒度分布等手段对材料进行了表征,并通过恒流充放电测试对比了铝球和复合材料的电化学性能.通过改性,550℃和650℃下生成的复合材料的首次放电容量可分别高达990mAh/g和738mAh/g,与纯铝电极的首次放电容量相比(219mAh/g)有了很大提高.其中,650℃下生成的复合材料表现出较好的循环性能.  相似文献   
583.
望军  赵雨  范保艳  张均  邢安  刘晓燕 《人工晶体学报》2021,50(11):2150-2155
可穿戴、可折叠电子设备日益受到人们的关注,开发与之配套的柔性电极材料成为当下的研究热点。本研究采用水热法制备前驱体/碳布复合材料,将其在高纯氩气气氛下煅烧,得到柔性的CoO多孔纳米片阵列/碳布负极材料。这种多孔与三维网状立体结构能够有效缓解充放电过程中材料的体积效应,而且多孔结构还增加了活性物质CoO纳米片的比表面积,有利于电极材料储锂容量的提升。电化学性能测试表明,该CoO多孔纳米片阵列/碳布负极材料在100 mA·cm-2的恒电流下, 首次放电容量1 862.8 mAh·cm-2,首次循环库伦效率87.8%,在700 mA·cm-2的电流密度下,经过100次的充放电循环后,材料的放电比容量仍保持在1 428.9 mAh·cm-2。在1 000 mA·cm-2的电流密度下,仍然有1 353.8 mAh·cm2的容量。该方法简便易行且原料成本低廉,可以降低锂离子电池柔性负极材料的成本。  相似文献   
584.
针对硅氧基负极材料的主要缺陷,在SiOx/石墨基负极材料中巧妙地引入了Si-Fe、SnO2合金化合物,以改善其电化学性能,并通过机械球磨、喷雾干燥和高温热解策略制备了一系列硅氧基复合负极材料。采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、能谱仪(EDS)和恒流充放电测试仪对复合材料的物相、微观形貌及电化学性能进行了表征。电化学测试结果表明,复合质量分数5% Si-Fe的目标材料充电容量高达443.4 mAh·g-1,首次库仑效率达75.2%,循环310圈之后容量仍有369.1 mAh·g-1,容量保持率为81.0%(相对第11圈);同时,经Si-Fe复合之后,锂离子扩散速率得到了明显改善。  相似文献   
585.
采用一种简单的方法制备具有类钢筋混凝土结构的Si-O-C负极材料,其中碳纳米管(carbon nanotubes,CNTs)如同钢筋一般嵌入材料中以提供应力支撑,硅原子被原子级分散的碳和氧原子均匀包裹,最后通过化学气相沉积镀上最外层的碳层,进一步抑制材料的体积变化。基于此独特的结构设计制备的CNTs/SiOx-C/C负极表现出优异的电化学性能,其在0.5 A·g-1的电流密度下循环970圈后容量保留率为80%。  相似文献   
586.
利用室温固相自组装反应制备Co (Ⅱ)和Fe (Ⅱ)双席夫碱配合物,随后在硫粉存在下中温热处理,使该配合物同时发生热解碳化和固相硫化反应,从而获得N、S共掺杂碳限域的FeCoS2纳米复合物(记为FeCoS2⊂NSC)。通过粉末X射线衍射、透射电镜、X射线光电子能谱和热重分析技术分别对纳米复合物的物相、形貌结构、组分和含量等进行物理表征,并通过循环伏安、恒电流充放电技术测试其电化学储钠性能。研究结果表明,最优化条件下制备的复合物(FeCoS2⊂NSC-7001)中FeCoS2粒子的平均尺寸约为3.4 nm,且被均匀限域在N、S共掺杂的碳基体中;该复合物作为钠离子电池负极时,在0.1 A·g-1的电流密度下经过300次充放电循环,其可逆充电比容量仍高达310.4 mAh·g-1;即使在5 A·g-1的大电流密度下,其充电比容量也高达146.0 mAh·g-1,呈现优异的电化学储钠性能。  相似文献   
587.
Si基负极材料具有比容量高和嵌锂电势低等优点,已成为提高锂离子电池能量密度的关键材料.但其巨大的体积膨胀和与电解液间的副反应造成了严重的界面问题.本文从硅负极界面的定义出发,对界面问题、成因和形成机制进行了综合评述;并分别从结构优化、人工界面构筑、电解液配方优化和固态电池中的界面问题4个方面阐述了硅基负极界面工程的发展现状;最后,对硅基负极界面问题的解决方案进行了总结与展望.  相似文献   
588.
随着便携式电子设备、电动汽车和智能电网等快速发展,人们对高能量密度锂金属电池的关注日益增多。锂金属表面不均匀的剥落或沉积会导致锂枝晶生长,锂枝晶容易刺穿隔膜,存在引发电池短路的风险,而且高反应活性的锂金属会与电解液不断反应被消耗,生成不稳定的固体电解质界面(SEI)膜,造成不可逆的容量损失,因此兼顾高能量密度与高安全性是锂金属电池发展应用中亟需解决的关键科学问题。具有强吸电子基团(C≡N)的聚丙烯腈(PAN)聚合物与碳酸酯溶剂中C=O的相互作用能形成更稳定的SEI膜,PAN作为锂负极涂层还能抑制锂枝晶的生长;另外,PAN具有较低的最低未占据分子轨道、较高的电化学稳定性和较宽的电化学窗口,能作为锂金属电池的聚合物电解质,并匹配高电压正极,兼具高能量密度和高安全性,故PAN聚合物在锂金属电池的电解质中有着很大的应用潜力。本文从电解质的不同状态(液态、凝胶、固态)介绍了PAN聚合物在液态电解质中作为隔膜、锂负极保护层以及在凝胶电解质、固态电解质的最新研究成果,并对PAN聚合物在锂金属电池电解质中的发展趋势进行展望。  相似文献   
589.
作为微电子器件的理想电源,全固态薄膜锂电池(TFB)已经被广泛地研究了几十年,并开始进入商业化应用。然而,目前关于失效TFB的回收与再利用的研究几乎没有,这将会阻碍TFB的可持续发展。本工作针对因金属锂负极失效而造成电池失效的TFB,提出了一种简单的基于最常见LiCoO2 (LCO)/LiPON/Li TFB (F-TFB)的直接回收再利用的方法。研究发现,F-TFB中的金属锂负极薄膜在循环过程会被部分氧化从而造成电池失效。我们提出利用无水乙醇溶液有效地溶解并去除F-TFB上失效的金属锂负极部分,从而快速地回收底层的LCO/LiPON薄膜。结构分析和表面分析结果表明,回收的LCO/LiPON薄膜中的LCO正极的晶体结构、LCO/LiPON的界面结构以及LiPON电解质的表面保持完好,使其再利用成为了可能。进一步地,我们在回收的LCO/LiPON薄膜上依次沉积了LiPON和Li薄膜,构建得到了电化学性能恢复的LCO/LiPON/Li TFB,并获得了与新制备的TFB相一致的比容量(0.223 mAh∙cm−2)、良好的倍率性能和循环寿命(500次循环后容量保持率为77.3%)。这种简单而有效的回收再利用方法有望延长固态电池的使用寿命,减少能源和资源消耗,促进固态电池的可持续发展。  相似文献   
590.
金属锂具有超高理论比容量密度(3680 mA·h·g?1)和低还原电位(?3.04 V vs.SHE),被认为是高能量密度电池负极材料的“圣杯”.然而,由于锂枝晶不可控生长和对电解质高反应性导致的库仑效率低、循环寿命短及内短路等问题严重制约着金属锂负极的实用化进展.在实际的电化学体系中,集流体作为金属锂沉积/脱出的基底,其表面性质对锂负极的循环稳定性起着至关重要的作用.本文从负极、集流体表面成分以及微结构设计两方面系统总结了构建三维亲锂骨架材料的改性策略.利用金属、金属氧化物、杂原子掺杂、聚合物材料及有机框架材料等高亲锂材料对集流体和负极的界面及结构进行针对性调控修饰,可以有效调控金属锂的电沉积,推进金属锂负极在高能量密度电池体系中的实用化进程.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号