首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   207篇
  免费   42篇
  国内免费   344篇
化学   533篇
晶体学   28篇
力学   1篇
综合类   5篇
数学   2篇
物理学   24篇
  2024年   9篇
  2023年   34篇
  2022年   35篇
  2021年   61篇
  2020年   35篇
  2019年   28篇
  2018年   24篇
  2017年   27篇
  2016年   28篇
  2015年   28篇
  2014年   31篇
  2013年   48篇
  2012年   22篇
  2011年   25篇
  2010年   13篇
  2009年   20篇
  2008年   8篇
  2007年   21篇
  2006年   16篇
  2005年   10篇
  2004年   8篇
  2003年   14篇
  2002年   11篇
  2001年   13篇
  2000年   6篇
  1999年   4篇
  1998年   6篇
  1997年   6篇
  1994年   1篇
  1993年   1篇
排序方式: 共有593条查询结果,搜索用时 46 毫秒
21.
锑(Sb)具有高的理论比容量、较小的电极极化、合适的Na+脱嵌电位、价格低廉以及环境友好的优势,而成为一种具有较大应用前景的钠离子电池负极材料。但是,Sb基负极材料的一个重要挑战是在循环过程中高比容量伴随着大的体积变化,进而导致活性材料粉化,并从集流体上脱落,这大大限制了其在钠离子电池领域的大规模应用。因此,如何解决Sb基负极材料充放电过程中体积膨胀问题对于高性能的钠离子电池设计是至关重要的。本文详细综述和讨论了Sb基材料的结构-性能关系及其在钠离子电池中的应用,详细介绍了钠离子电池Sb基负极材料在氧化还原反应机理、形貌设计、结构-性能关系等方面的最新研究进展。本综述的主要目的是探讨影响Sb基负极材料性能的决定因素,从而提出有前途的改性策略,以提高其可逆容量和循环稳定性。最后,对Sb基钠离子电池负极材料的未来发展、面临的挑战和前景进行了展望。本文可为Sb负极材料的构建和优化提供具体的观点,阐明了Sb基负极材料未来的发展方向,从而促进钠离子电池的快速发展和实际应用。  相似文献   
22.
金属锂因具有极高的理论比容量(3860 mAh/g)和最低的电化学势(相对于标准氢电极为-3.04 V),被认为是下一代高比能锂离子电池的首选负极材料。然而,金属锂负极在电池循环过程中发生的刺状枝晶生长和体积变化等问题严重阻碍了其产业化应用进程。近年来研究表明,通过在金属锂中引入具有三维(3D)结构的宿主骨架,不但能有效抑制锂枝晶的生长,而且可以缓解金属锂负极的体积变化,从而提高金属锂电池的循环性能与安全性。因此,设计3D骨架/金属锂复合负极被认为是一种能有效解决金属锂问题的新兴策略。本文综述了热熔灌输法制备3D骨架/金属锂复合负极的研究进展。首先讨论了当前基于3D骨架的预存金属锂技术,然后着重分析了热熔灌输策略中3D骨架锂润湿性的影响因素,以及不同3D骨架修饰特征和改性方法。最后对3D骨架/金属锂复合负极和热熔灌输策略现存问题进行了总结并提出未来的发展方向。  相似文献   
23.
金属锂作为电池的负极材料具有极高的比容量和极低的氧化还原电位,能够显著提升电池的能量密度。然而,金属锂负极在实际应用中所面临的主要问题是锂枝晶、界面副反应和电极体积变化大的难题。在本文中,我们提出了一种通过将定量的金属锂与三维骨架进行复合形成三维泡沫锂负极的策略,并利用三维泡沫锂来抑制锂枝晶的生长和缓解电极的体积变化。因此,三维泡沫锂电极有利于金属锂负极的高效利用,并能借助其与平面锂箔相比更高的比表面积和更多的反应位点来提升电池的倍率性能。因此,通过采用三维泡沫锂,对称电池的循环寿命和倍率性能都得到了有效的提升。EIS数据结果表明,三维泡沫锂能够减小对称电池的电荷转移阻抗。而且,将三维泡沫锂作为负极组装的LTO全电池,与锂箔作为负极相比,循环1000周平均放电比容量从65 mAh·g-1提升至121 mAh·g-1。  相似文献   
24.
水热法是广泛应用于锂离子电池Si@C电极材料的一种制备方法,其反应条件是影响产物最终形貌和性能的重要因素, 采取最佳的反应工艺可以大大提升材料的电化学性能。本研究中, 使用葡萄糖作为碳源, 光伏切割废料硅为硅源, 探究了水热法制备核壳结构Si@C电极材料的最优工艺, 分别研究了温度、 原料浓度、 反应时间和原料比例对产物的形貌、 性能的影响以及相互之间的关系, 并得到最佳反应条件。在该条件下(葡萄糖浓度为0.5 mol·L-1, 硅与葡萄糖重量比为0.3:1, 反应温度190 oC, 反应时间9 h), 得到了包覆完整、 粒径适中的Si@C电极材料(CS190-3), 对以该样品为负极的扣式半电池进行电化学测试, 在655 mA·g-1的电流密度下, 其首圈放电比容量为3369.5 mAh·g-1, 经过500次循环剩余容量为1405.0 mAh·g-1。倍率测试中, 在6550 mA·g-1的电流密度下,其剩余容量为937.1 mAh·g-1,当电流密度恢复至655 mA·g-1时,电池放电比容量仍可恢复至1683.0 mAh·g-1。  相似文献   
25.
低成本、高性能的钠离子电池有望成为代替锂离子电池的下一代核心器件.但是开发出高比容量、高倍率的钠离子电池负极材料依然是瓶颈.本文通过水热/溶剂热法制备了Co基前驱体,然后将其一步硫/磷热处理制得具有空心多孔结构的h-Co9S8/CoP/C纳米复合材料.通过X-射线粉末衍射(XRD)、拉曼光谱(Raman)、扫描电镜(SEM)、透射电镜(TEM)和X-射线光电子能谱(XPS)等表征以确定纳米复合物的物相以及形貌特征.当h-Co9S8/CoP/C作为钠离子电池负极材料时,该电极材料展示了高的比容量(561 mAh g-1@0.1 Ag-1)、较好的循环性能(可逆比容量200 mAh g-1@2 Ag-1)和倍率性能.h-Co9S8/CoP/C之所以显示出良好的储钠性能,主要得益于其空心多孔结构不仅提供更多的空间缓解钠在反复嵌入和脱出过程造成的体积膨胀效应,而且可以缩短离子/电荷扩散途径以加快反应动力学,此外,Co9S8、CoP和C独特的电子结构优势得以共同发挥.  相似文献   
26.
随着电动汽车和便携式电子产品的快速发展, 人们对于高比能二次电池的需求越来越迫切. 锂金属以其极高的理论比容量和极低的电极电势被视为下一代高比能电池理想负极材料之一. 但是, 锂枝晶的生长及体积膨胀等问题限制了金属锂负极的实际应用. 在金属锂负极中引入三维骨架可以有效抑制锂枝晶生长, 缓解体积膨胀. 其中亲锂骨架可以降低锂的形核能垒, 诱导锂的均匀成核, 更加有效地调控锂沉积行为. 本文结合国内外的研究进展总结了锂金属负极中亲锂骨架的研究成果. 根据亲锂材料的不同对亲锂骨架进行了分类, 总结了各类亲锂骨架在调控锂沉积行为和提高电池性能方面取得的成果, 并对其今后的研究和发展进行了展望.  相似文献   
27.
金属锂因其具有极高的理论容量(3860 mAh·g?1)、最低的电极电位(?3.04 V vs.标准氢电极)和低的密度(0.534 g·cm?3),被认为是最具潜力的负极材料。但循环过程中不可控的枝晶生长及不稳定的固体电解质相界面膜所引起的安全隐患和电池库伦效率低等问题严重阻碍了锂金属负极的发展。通过在电极表面构建人造保护膜可以有效调控锂离子沉积行为,因此人造保护膜的构建是一种简单高效抑制锂枝晶生长的策略。本综述将从聚合物保护膜、无机保护膜、有机-无机复合保护膜和合金保护膜总结了人造保护膜的构建方法、抑制锂枝晶生长机理,为促进高比能锂金属电池的商业化应用提供借鉴参考作用。  相似文献   
28.
通过经济有效的方法制备得到一种具有长循环寿命的高效稳定性硅/硅氧碳/无定形碳的复合负极材料结构. 在这种结构中,以具有稳定化学性能的硅氧碳结构作为骨架,来支撑和隔离硅纳米颗粒结构. 材料中包含的无定形碳组分可提高硅/硅氧碳结构的电导性能. 这种复合负极结构在0.3C电流充放电情况下,不仅能发挥出637.3 mAh·g-1的比容量,而且在经过100 周的充放电循环后,其容量保持率也达到86%. 这种新型硅基负极材料的设计为其他功能材料的设计提供了一种潜在可能的方法.  相似文献   
29.
采用静电自组装方法,分两步合成Fe(OH)3/GO前驱体(GO:氧化石墨烯),再通过水热反应和600°C高纯氮气气氛下煅烧,获得了Fe3O4/石墨烯复合材料.通过X射线衍射(XRD)、扫描电镜(SEM)、高分辨透射电镜(HRTEM)、拉曼(Raman)光谱等多种分析,发现该复合材料具有三维多孔石墨烯网络结构.把合成的这种Fe3O4/石墨烯复合材料作为锂离子电池负极材料,电化学测试结果表明其具有优良的电化学性能:首次放电容量为1390 mAh·g-1,50次循环后容量为819 mAh·g-1.通过对比实验表明,三维石墨烯网络结构的形成对复合材料的电化学循环稳定性起着关键作用.  相似文献   
30.
采用液相沉淀法结合低温固相热解法合成了锂离子电池片状Co3O4负极.通过X射线粉体衍射(XRD)、Brunauer-Emmett-Teller(BET)比表面积分析、扫描电子显微镜(SEM)及恒电流充放电等表征手段,发现该Co3O4为立方相,结晶完整且无杂质,由直径为1.5-3.0μm、厚度约为100-300 nm的不规则片状颗粒组成,比表面积约为30.5 m2·g-1;其比容量高且容量保持率好,在0.1C倍率下,首次放电容量高达1444.5 mAh·g-1,50次循环后充电容量仍大于1100.0 mAh·g-1;但在高倍率(1C)下,50次循环后充电容量保持率仅为75.3%,倍率性能一般.故采用碳纳米管(CNTs)掺杂改性,结果表明:在1C倍率下,70次循环后复合材料充电容量保持率为96.3%;在2C倍率下,50次循环后充电容量保持率仍高达97.0%,倍率性能显著提升.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号