全文获取类型
收费全文 | 1115篇 |
免费 | 531篇 |
国内免费 | 1222篇 |
专业分类
化学 | 1744篇 |
晶体学 | 230篇 |
力学 | 46篇 |
综合类 | 31篇 |
数学 | 60篇 |
物理学 | 757篇 |
出版年
2024年 | 13篇 |
2023年 | 36篇 |
2022年 | 63篇 |
2021年 | 80篇 |
2020年 | 76篇 |
2019年 | 64篇 |
2018年 | 47篇 |
2017年 | 79篇 |
2016年 | 98篇 |
2015年 | 124篇 |
2014年 | 153篇 |
2013年 | 198篇 |
2012年 | 170篇 |
2011年 | 151篇 |
2010年 | 165篇 |
2009年 | 171篇 |
2008年 | 138篇 |
2007年 | 140篇 |
2006年 | 157篇 |
2005年 | 119篇 |
2004年 | 100篇 |
2003年 | 98篇 |
2002年 | 69篇 |
2001年 | 78篇 |
2000年 | 56篇 |
1999年 | 46篇 |
1998年 | 22篇 |
1997年 | 37篇 |
1996年 | 27篇 |
1995年 | 16篇 |
1994年 | 15篇 |
1993年 | 8篇 |
1992年 | 11篇 |
1991年 | 10篇 |
1990年 | 11篇 |
1989年 | 12篇 |
1988年 | 5篇 |
1987年 | 3篇 |
1983年 | 1篇 |
1982年 | 1篇 |
排序方式: 共有2868条查询结果,搜索用时 0 毫秒
111.
液氘在高压下有丰富的电学光学性质。利用反射率和相对介电函数关系并从广义极化角度出发初步建立了计算低Z材料电导率的简易模型;在神光-Ⅱ装置上利用第九路激光冲击加载液氘材料并测量了其在强激光冲击下的高压状态参数和反射率。结合上述理论模型和实验,研究了高压下液氘的电离度和电导率。结果表明,液氘在约70 GPa时的电导率约为2.87105 (Wm)-1,已呈现出较为明显的金属电导特性。显然,冲击加载下液氘从绝缘分子态开始电离并向金属氘转变发生在更低的压强。 相似文献
112.
113.
114.
采用软模板法合成介孔碳材料前驱体,引入钴盐,通过高温煅烧等步骤得到负载钴氧化物纳米粒子的介孔碳基催化剂。通过X-射线衍射(XRD)、透射电子显微镜(TEM)、X-射线光电子能谱(XPS)、循环伏安法(CV)和线性扫描伏安法(LSV)等测试方法对所制备的催化剂的成分、结构和电化学性能进行了表征。结果表明,钴以四氧化三钴的形式成功负载于介孔碳材料基底,所得催化剂在碱性环境中表现出与商业Pt/C催化剂相当的氧还原催化活性,并且其稳定性优于商业Pt/C催化剂,有望取代造价高昂的Pt/C基催化剂,成为新型燃料电池阴极催化材料。 相似文献
115.
116.
本文以高分子聚合物(F127)为模板, 以强疏水的1,3,5-三甲基苯为有机添加物, 通过旋转覆膜的方法制备出具有多级复合孔的二氧化钛晶体薄膜, 并采用TEM和SEM对样品结构进行了分析, 同时考察了这种薄膜对DNA分子的吸附性能. 相似文献
117.
118.
合金化可以调节贵金属纳米材料的物理化学性质,从而显著提升它们的电催化性能。尽管合金化在过去的20多年里已取得诸多成果,但是如何充分发挥纳米合金的组分优势仍需深入的探究。本研究通过一步溶液相合成法实现了类金属硼(B)合金化的钯基介孔纳米催化剂材料的合成,同时探究了B原子的组分优势和介孔形貌的结构优势在碱性介质中电化学甲醇氧化反应(MOR)的协同作用。最优PdCuB介孔纳米催化剂表现出优异的电化学MOR活性和稳定性。机理研究表明,优异的催化活性源于B原子在Pd基介孔纳米催化剂中的积极协同作用;该协同作用通过电子效应(改变Pd的表面电子结构从而减弱CO基中间体的吸附)和双功能效应(促进OH_(2)的吸附从而氧化CO基中间体)在动力学上加速了有毒CO基中间体的去除(提高甲醇氧化的决速步骤)。同时,B原子的间隙插入和介孔结构抑制了物理奥斯特瓦尔德(Ostwald)熟化过程,显著增加了催化剂的稳定性。 相似文献
119.
金属锂具有超高的理论容量(3860 mAh·g-1)和低氧化还原电位(-3.04 V vs.标准氢电极),是极具吸引力的下一代高能量密度电池的负极材料。然而,循环过程中的体积膨胀、锂枝晶生长和“死锂”等问题严重的限制了其实际应用。合理设计三维骨架调控金属锂的成核行为是抑制锂枝晶生长的有效策略。本文中,我们发展了一种“软硬双模板”的方法合成了兼具大孔和介孔的三维碳-碳化钛(Three-dimensional macro-/mesoporous C-TiC,表示为3DMM-C-TiC)复合材料。多级孔道为金属锂的沉积提供了足够的空间,缓冲充放电中巨大的体积变化。此外,TiC的引入显著增强多孔骨架的导电性,改善锂金属的成核行为,促进金属锂的均匀成核和沉积,抑制锂枝晶生长。3DMM-C-TiC||Li电池测试表明,在循环300圈以后,库伦效率仍保持在98%以上。此外,所得材料与LiFePO4 (LFP)组成的全电池也表现出优异的倍率和循环性能。本工作为无枝晶锂金属负极的设计提供了新的思路。 相似文献
120.
有序介孔材料是指孔径在2~50 nm之间的多孔材料, 是一类具有均匀孔径、 高有序度纳米孔道和高比表面积的新材料. 在过去30年里, 有序介孔材料的研究取得了长足的进步, 在可控合成、 结构设计和调控及功能化等方面形成了系统的理论. 同时, 其应用领域也不断被拓展, 包括能源存储与转化、 催化、 生物医药和传感等方面. 本文首先回顾了有序介孔材料的发展历史, 简要介绍发展过程中“里程碑式”的研究工作; 然后根据构效关系总结了其在不同领域应用的最新进展; 最后讨论了有序介孔材料领域进一步发展所面临的挑战与机遇, 并对未来前景进行了展望. 相似文献