首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   894篇
  免费   1篇
化学   883篇
力学   3篇
数学   1篇
物理学   8篇
  2024年   11篇
  2023年   331篇
  2022年   83篇
  2021年   135篇
  2020年   195篇
  2019年   108篇
  2018年   1篇
  2017年   28篇
  2016年   2篇
  2015年   1篇
排序方式: 共有895条查询结果,搜索用时 15 毫秒
101.
The 1,4-palladium shift strategy allows the functionalization of remote CH bonds that are difficult to reach directly. Reported here is a domino reaction proceeding by C(sp3)H activation, 1,4-palladium shift, and amino- or alkoxycarbonylation, which generates a variety of amides and esters bearing a quaternary β-carbon atom. Mechanistic studies showed that the aminocarbonylation of the σ-alkylpalladium intermediate arising from the palladium shift is fast using PPh3 as the ligand, and leads to the amide rather than the previously reported indanone product.  相似文献   
102.
Radiolabelling is fundamental in drug discovery and development as it is mandatory for preclinical ADME studies and late-stage human clinical trials. Herein, a general, effective, and easy to implement method for the multiple site incorporation of deuterium and tritium atoms using the commercially available and air-stable iridium precatalyst [Ir(COD)(OMe)]2 is described. A large scope of pharmaceutically relevant substructures can be labelled using this method including pyridine, pyrazine, indole, carbazole, aniline, oxa-/thia-zoles, thiophene, but also electron-rich phenyl groups. The high functional group tolerance of the reaction is highlighted by the labelling of a wide range of complex pharmaceuticals, containing notably halogen or sulfur atoms and nitrile groups. The multiple site hydrogen isotope incorporation has been explained by the in situ formation of complementary catalytically active species: monometallic iridium complexes and iridium nanoparticles.  相似文献   
103.
Transmembrane protein channels are an important inspiration for the design of artificial ion channels. Their dipolar structure helps overcome the high energy barrier to selectively translocate water and ions sharing one pathway, across the cell membrane. Herein, we report that the amino-imidazole (Imu) amphiphiles self-assemble via multiple H-bonding to form stable artificial Cl-channels within lipid bilayers. The alignment of water/Cl wires influences the conduction of ions, envisioned to diffuse along the hydrophilic pathways; at acidic pH, Cl/H+ symport conducts along a partly protonated channel, while at basic pH, higher Cl/OH antiport translocate through a neutral channel configuration, which can be greatly activated by applying strong electric field. This voltage/pH regulated channel system represents an unexplored alternative for ion-pumping along artificial ion-channels, parallel to that of biology.  相似文献   
104.
A dicationic triruthenium complex containing a μ3-η3-C3 ring, [(Cp*Ru)3(μ3-η3-C3MeH2)(μ3-CH)(μ-H)]2+ ( 1 a , Cp*=η5-C5Me5), reacted with ammonia to yield a μ-amido complex, [(Cp*Ru)33-η3-CHCMeCH) (μ3-CH)(μ-NH2)]2+ ( 5 ), via NH bond scission. Subsequent treatment with base resulted in CN bond formation to yield a μ3-η2:η2-1-azabutadien-4-yl complex, [(Cp*Ru)3(μ3-CH)(μ3-η2:η2-NH=CHCMe=CH)]+ ( 6 a ). The azaruthenacyclopentadiene skeleton was alternatively synthesized by the photolysis of mono-cationic complex [(Cp*Ru)3(μ3-η3-C3RH2)(μ3-CH)]+ ( 2 a ; R=Me, 2 b ; R=H) in the presence of ammonia. The C3 ring skeleton was broken via the electron transfer to the π*(CC) orbital in the C3 ring, and a transiently generated unsaturated μ3-allylic species can take up ammonia, resulting in NH bond scission followed by CN bond formation.  相似文献   
105.
106.
Nucleophilic radical additions at innately electrophilic C(sp2) centers are perfectly suited for the direct functionalization of heterocycles. Using bench stable and commercially available alkyl oxamate and oxamic acid derivatives in combination with photoredox catalysis, a direct carbamoylation of heterocycles yielding amide functionalized pharmacophores in a single step is reported. The reaction conditions reported are compatible with structurally complex heterocyclic substrates of pharmaceutical interest. Notably, derivatives containing functional groups incompatible with standard amidation reactions, such as carboxylic acids and unprotected amines, were found to be amenable to this reaction paradigm.  相似文献   
107.
Diethyl 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (HEH) has been utilized as a visible-light photoredox catalyst for the cross coupling of arylhalides and arylsulfinates without transition metal, sacrificial agent, and mediator. This method is compatible with various functional groups and provides diaryl sulfones in good to high yields. Mechanistic studies indicate that this reaction undergoes the stepwise light irradiation of HE, single electron transfer (SET) in donor–acceptor complex (DAC) from *HE to arylhalide, trapping of aryl radical with sulfinate, and SET oxidation of sulfone radical anion by HE. to sulfone by the DAC method.  相似文献   
108.
As appreciation for nonclassical hydrogen bonds has progressively increased, so have efforts to characterize these interesting interactions. Whereas several kinds of CH hydrogen bonds have been well-studied, much less is known about the R3N+CH⋅⋅⋅X variety. Herein, we present crystallographic and spectroscopic evidence for the existence of these interactions, with special relevance to Selectfluor chemistry. Of particular note is the propensity for Lewis bases to engage in nonclassical hydrogen bonding over halogen bonding with the electrophilic F atom of Selectfluor. Further, the first examples of 1H NMR experiments detailing R3N+CH⋅⋅⋅X (X=O, N) hydrogen bonds are described.  相似文献   
109.
Sulfur-containing scaffold, as a ubiquitous structural motif, has been frequently used in natural products, bioactive chemicals and pharmaceuticals, particularly CS/NS bonds are indispensable in many biological important compounds and pharmaceuticals. Development of mild and general methods for CS/NS bonds formation has great significance in modern research. Iodine and its derivatives have been recognized as inexpensive, environmentally benign and easy-handled catalysts or reagents to promote the construction of CS/NS bonds under mild reaction conditions, with good regioselectivities and broad substrate scope. Especially based on this, several new strategies, such as oxidation relay strategy, have been greatly developed and accelerated the advancement of this field. This review focuses on recent advances in iodine and its derivatives promoted hybridized CS/NS bonds formation. The features and mechanisms of corresponding reactions are summarized and the results of some cases are compared with those of previous reports. In addition, the future of this domain is discussed.  相似文献   
110.
A unique trend in the binding affinity between cationic metalorganic cages (MOCs) and external counteranions in aqueous media was observed. Similar to many macroions, two MOCs, sharing similar structures but carrying different number of charges, self-assembled into hollow spherical single-layered blackberry-type structures through counterion-mediated attraction. Dynamic and static light scattering and isothermal titration calorimetry measurements confirm the stronger interactions among less charged MOCs and counteranions than that of highly charged MOCs, leading to larger assembly sizes. DOSY NMR measurements suggest the significance of thick hydration shells of highly charged MOCs, inhibiting the MOC-counterion binding and weakening the interaction between them. This study demonstrates that the greater role played by hydration shell on ion-pair formation comparing with charge density of MOCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号