排序方式: 共有33条查询结果,搜索用时 15 毫秒
11.
以氢气程序升温还原(H2-TPR)为手段,研究了中温固体氧化物燃料电池烧结NiO/YSZ阳极的还原过程,并通过对电池开路电位和阻抗的原位监测考察了电池中阳极的还原过程.H2-TPR结果表明,阳极烧结温度升高,阳极中的NiO变得难以还原,但当温度提高到1 500℃时,NiO还原峰的峰温降低.阳极NiO含量越高,NiO越容易被还原.这是由于烧结过程中NiO颗粒长大和NiO/YSZ界面分离共同作用的结果.电池原位还原过程中开路电位的变化表明,具有高NiO含量的阳极还原较慢.这主要是由于高NiO含量的阳极具有较大的收缩率和大的NiO粒子,导致还原初期产生的大量H2O不能被及时排出,从而抑制了还原过程.电池还原过程中交流阻抗谱的变化表明,50%NiO/YSZ阳极具有最稳定的还原过程.30%和70%NiO/YSZ电池都有一个极化电阻逐渐增大的过程,前者的极化电阻在还原600 min后逐渐稳定,而后者并不能稳定. 相似文献
12.
Mori T. Ikegami T. Yamamura H. Atake T. 《Journal of Thermal Analysis and Calorimetry》1999,57(3):831-838
Y2O3 has a crystal structure of c-type rare-earth oxide. Y2O3 does not show an oxide ionic conductivity. On the other hand, CeO2 based oxide is one of the most interesting of the fluorite oxides since the ionic conductivity of it is higher than that of yttria-stabilized zirconia. However, CeO2 based oxides are partially reduced and develop electronic conductivity under reduced atmosphere.In this study, the effective index for the improvement of ionic conductivity in Y2O3 and CeO2 systems was defined using ionic radii from the viewpoint of crystallography. The utility of this effective index on some electrical properties was investigated.This revised version was published online in November 2005 with corrections to the Cover Date. 相似文献
13.
Experimental results from high-energy ball milling of alumina-yttria powder mixtures have been analyzed with models collected from the literature. Depending on the milling conditions, either there is formation of an intermediate phase in the alumina-yttria system (yttrium aluminum perovskite, YAP), or the sample becomes mostly amorphous. Variations due to milling tool material can be accounted for by local models based on the Hertzian theory of elastic bodies, but the effects of changing mills are poorly accounted for by published models. Therefore, the concept of an impact frequency distribution over the energy spectrum is introduced as a tool for studying the characteristics of the mills. The pressure on the powder trapped between two colliding bodies has been found to be the factor deciding the outcome of the process. The threshold behavior of the system yields an amorphous structure for low pressures, and formation of YAP when impact pressures exceed the threshold value. 相似文献
14.
Thin films of Eu-doped Y2O3 were deposited using the pulsed laser ablation technique on amorphous fused silica substrates. The effect of oxygen partial pressure (pO2) and substrate temperature on the structural and optical characteristics of the deposited films were investigated. All the deposited films were crystalline, showing preferred orientation along the (111) plane, irrespective of oxygen partial pressure and substrate temperature. The film deposited at 0.005?mbar pO2 exhibited better crystallinity with minimum FWHM at a substrate temperature of 600°C. All the films deposited at various substrate temperatures and different partial pressure (at 600°C) exhibited a red luminescence peak at 615?nm corresponding to the 5D0–7F1 transition in Eu3+. Photoluminescence excitation spectra exhibited two bands, one corresponding to band to band excitation (212?nm) of the host and the other to charge transfer band excitation (245?nm). A microstructure analysis revealed that surface roughness of the as-deposited films increases with increase in oxygen partial pressure. 相似文献
15.
稀土氧化物对水煤气变换催化剂Au/CeO2性能的影响 总被引:2,自引:0,他引:2
采用沉积沉淀法制备了一系列Au/CeO2-RE2O3(RE=Nd,Eu,Sm,Y)和不同Y2O3添加量的Au/CeO2-Y2O3水煤气变换(WGS)反应催化剂,通过N2吸附-脱附、X射线粉末衍射、H2程序升温还原和Raman光谱等手段对催化剂进行了表征.结果表明,Y2O3的引入能有效提高Au/CeO2体系WGS反应的活性和稳定性,其中Ce/Y摩尔比为35时催化剂活性和稳定性最高.这是由于该添加量的Y2O3能最大程度提高Au/CeO2催化剂的结构稳定性,形成较高表面氧缺陷,有效增强Au与载体间相互作用. 相似文献
16.
采用液相法和真空烧结技术制备了2.0%Nd,3.0%La共掺杂Y2O3透明陶瓷样品.样品晶粒均匀,大小在22μm左右,在晶粒和晶界处都未见气孔.元素线扫描结果表明,Nd离子和La离子均匀地分布于陶瓷晶粒和晶界处.并测试了样品的吸收光谱和荧光光谱.样品在主吸收峰821nm处的吸收截面为4.3×10-24m2,主荧光发射峰位于1078nm处,实测荧光寿命为0.287ms.采用Judd-Ofelt理论计算了Nd3+在掺La氧化钇陶瓷晶体场中的强度参数Ωλ(λ=2,4,6),自发辐射概率、辐射寿命、荧光分支比等光谱参数.通过F-L公式计算得到2.0%Nd,3.0%La共掺杂Y2O3透明陶瓷中Nd3+的4F3/2→4I11/2跃迁对应的受激发射截面大小为2.0×10-24m2.结果表明,La离子的掺入可以调节氧化钇透明陶瓷的晶体场,有助于制备符合实际需求的固体激光器材料. 相似文献
17.
Vinoadh Kumar Krishnan Kumaran Sinnaeruvadi Shailendra Kumar Verma Biswaranjan Dash Priyanka Agrawal Karthikeyan Subramanian 《哲学杂志》2013,93(22):1847-1865
AbstractThe present work deals with synthesis, characterisation and elevated temperature mechanical property evaluation of V–4Cr–4Ti and oxide (yttria = 0.3, 0.6 and 0.9 at%) dispersion strengthened V–4Cr–4Ti alloy processed by mechanical alloying and field-assisted sintering, under optimal conditions. Microstructural parameters of both powder and sintered samples were deduced by X-ray diffraction (XRD) and further confirmed with high resolution transmission electron microscopy. Powder diffraction and electron microscopy study show that ball milling of starting elemental powders (V–4Cr–4Ti) with and without yttria addition has resulted in single phase α–V (V–4Cr–4Ti) alloy. Wherein, XRD and electron microscopy images of sintered samples have revealed phase separation (viz., Cr–V and Ti–V) and domain size reduction, with yttria addition. The reasons behind phase separation and domain size reduction with yttria addition during sintering are extensively discussed. Microhardness and high temperature compression tests were done on sintered samples. Yttria addition (0.3 and 0.6 at.%) increases the elevated temperature compressive strength and strain hardening exponent of α–V alloys. High temperature compression test of 0.9 at% yttria dispersed α–V alloy reveals a glassy behaviour. 相似文献
18.
Christoffer Tyrsted Dr. Brian Richard Pauw Kirsten Marie Ørnsbjerg Jensen Dr. Jacob Becker Dr. Mogens Christensen Prof. Dr. Bo Brummerstedt Iversen 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(18):5759-5766
Understanding nanoparticle‐formation reactions requires multi‐technique in situ characterisation, since no single characterisation technique provides adequate information. Here, the first combined small‐angle X‐ray scattering (SAXS)/wide‐angle X‐ray scattering (WAXS)/total‐scattering study of nanoparticle formation is presented. We report on the formation and growth of yttria‐stabilised zirconia (YSZ) under the extreme conditions of supercritical methanol for particles with Y2O3 equivalent molar fractions of 0, 4, 8, 12 and 25 %. Simultaneous in situ SAXS and WAXS reveals a quick formation (seconds) of sub‐nanometre amorphous material forming larger agglomerates with subsequent slow crystallisation (minutes) into nanocrystallites. The amount of yttria dopant is shown to strongly affect the crystallite size and unit‐cell dimensions. At yttria‐doping levels larger than 8 %, which is known to be the stoichiometry with maximum ionic conductivity, the strain on the crystal lattice is significantly increased. Time‐resolved nanoparticle size distributions are calculated based on whole‐powder‐pattern modelling of the WAXS data, which reveals that concurrent with increasing average particle sizes, a broadening of the particle‐size distributions occur. In situ total scattering provides structural insight into the sub‐nanometre amorphous phase prior to crystallite growth, and the data reveal an atomic rearrangement from six‐coordinated zirconium atoms in the initial amorphous clusters to eight‐coordinated zirconia atoms in stable crystallites. Representative samples prepared ex situ and investigated by transmission electron microscopy confirm a transformation from an amorphous material to crystalline nanoparticles upon increased synthesis duration. 相似文献
19.
20.
The Molecular beam synthesis and characterization are reported for Y2O3 thin films grown on Al2O3 (0001) substrate. The Y2O3 layer was highly oriented in the [111] direction with predominant orientation relations (111) Y2O3 ‖ (0001) Al2O3 and [110] Y2O3 ‖ [2110] Al2O3, corresponding to a lattice mismatch of ~20% at the interface. No significant interfacial layers were found at the Y2O3/Al2O3 interface and the large lattice misfit was accommodated by formation of stacking faults, dislocations and secondary orientation in the Y2O3 layer. A La2O3 interlayer improved the quality of the Y2O3 films. Full width at half maximum (FWHM) of the Y2O3 (222) peak decreased from 3.12° to 1.43° and the defect density in the Y2O3 layer was significantly reduced. These results may be relevant in the broader context of designing oxide heterolayers with controlled microstructures. 相似文献