首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   5篇
  国内免费   5篇
化学   58篇
力学   44篇
综合类   3篇
数学   6篇
物理学   11篇
  2023年   1篇
  2022年   1篇
  2020年   1篇
  2018年   5篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   4篇
  2013年   7篇
  2012年   7篇
  2011年   4篇
  2010年   7篇
  2009年   9篇
  2008年   3篇
  2007年   14篇
  2006年   7篇
  2005年   5篇
  2004年   6篇
  2003年   2篇
  2002年   4篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1997年   3篇
  1996年   1篇
  1995年   4篇
  1994年   2篇
  1993年   6篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1982年   2篇
  1981年   2篇
排序方式: 共有122条查询结果,搜索用时 125 毫秒
61.
The mechanical behavior of semicrystalline polymers is strongly dependent on their crystallinity level, the initial underlying microstructure, and the evolution of this structure during deformation. A previously developed micromechanical constitutive model is used to capture the elasto‐viscoplastic deformation and texture evolution in semicrystalline polymers. The model represents the material as an aggregate of two‐phase layered composite inclusions, consisting of crystalline lamellae and amorphous layers. This work focuses on adding quantitative abilities to the multiscale constitutive model, in particular for the stress‐dependence of the rate of plastic deformation, referred to as the slip kinetics. To do that, the previously used viscoplastic power law relation is replaced with an Eyring flow rule. The slip kinetics are then re‐evaluated and characterized using a hybrid numerical/experimental procedure, and the results are validated for uniaxial compression data of HDPE, at various strain rates. A double yield phenomenon is observed in the model prediction. Texture analysis shows that the double yield point in the model is due to morphological changes during deformation, that induce a change of deformation mechanism. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1297–1310, 2011  相似文献   
62.
ABS/PVC blends were prepared over a range of compositions by mixing PVC, SAN, and PB‐g‐SAN. All samples were designed to have a constant rubber level of 12 wt % and the ratio of total‐SAN to PVC in the matrix of the blends varied from 70.5/17.5 to 18/80. Transmission electron microscope and scanning electron microscope have been used to study deformation mechanisms in the ABS/PVC blends. Several different types of microscopic deformation mechanisms, depending on the composition of blends, were observed for the ABS/PVC blends. When the blend is a SAN‐rich system, the main deformation mechanisms were crazing of the matrix. When the blend is a PVC‐rich system, crazing could no longer be detected, while shear yielding of the matrix and cavitation of the rubber particles were the main mechanisms of deformation. When the composition of blend is in the intermediate state, both crazing and shear yielding of matrix were observed. This suggests that there is a transition of deformation mechanism in ABS/PVC blends with the change in composition, which is from crazing to shear deformation. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 687–695, 2006  相似文献   
63.
根据混凝土破坏面的几何特性,本文提出了改进的混凝土五参数椭圆抛物面破坏准则,并给出了混凝土线性混合强化弹塑性本构关系,有关计算参数可方便地采用试验指标确定。本文理论同试验资料吻合较好,采用的屈服与破坏准则消除了某些常用屈服面的奇异性,使计算处理简化,描述准确。  相似文献   
64.
In this study it is shown, for a commercial polystyrene grade, that the strain-rate dependence of craze initiation is equivalent to that of yielding. This implies that the kinetics of craze initiation are determined by the nonlinear flow behavior, and that the actual cavitation process is governed by an additional, apparently rate-independent, criterion. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2066–2073, 2004  相似文献   
65.
Positions of elastic plastic interfaces play a vital role in safe design and safe use of high pressure vessels. The ENGIN-X neutron diffractometer at the ISIS facility was used to measure the residual strain profiles in a series of aluminium vessels which had been subjected to different pressure levels. The positions of elastic plastic interfaces of the autofrettaged pressure vessels were identified. The results revealed that the residual strain magnitude and the depth of the plastic region will increase with increasing autofrettage pressure level. When autofrettage pressure produces an elastic-plastic boundary at a greater depth than the geometric mean position of the vessel wall, reverse yielding will occur, hence the loss of the vessels’ elastic ability to its subsequent loading. The neutron experimental results agreed well with both the suggestions from existing literatures and the results from FE simulations.  相似文献   
66.
The strain rate, temperature, and microstructure-dependent, tensile-yielding behavior of three semi-crystalline polymers, namely high-density polyethylene (HDPE), polyamide 6 (PA6) and low-density polyethylene (LDPE), was investigated. It is found that, depending on the strain rate and temperature, the three polymers exhibit markedly different tensile deformation behavior, especially the shape of the stress-strain curves. LDPE exhibits a uniform extension and shows no obvious geometrically unstable effect, such as necking, during the overall tensile process. HDPE and PA6, on the other hand, show clear necking and cold-drawing phenomena during the uniaxial tensile process. When considering the effect of strain temperature on necking, significant differences between HDPE and PA6 emerge. For both, the heterogeneous necking disappears and homogeneous deformation occurs with increasing temperature. For HDPE, the homogeneous deformation takes place in the vicinity of the melting temperature, while for PA6, it takes place close to the glass transition temperature instead. The conventional yield point, corresponding to the force maximum in stress-strain curves, becomes less defined as the testing temperature is increased. It is applicable, to some extent, to combine the Brereton analysis and Considère construction to predict such a point quantitatively. However, this combination can only be suitable for homogeneously deformed material. In addition, it is found that the special, double yielding behavior will take place under certain deformation conditions for all three semi-crystalline polymers. With respect to judging the appearance of the double yielding of polymers, it seems that it can be estimated qualitatively by plotting the compression residual strain-applied strain curves of the samples.  相似文献   
67.
In the present study the size-effect due to a secondary void population during ductile fracture is investigated. Discrete primary voids are resolved in the process zone at the crack tip. A non-local GTN model is employed to describe the evolution of the secondary voids in the intervoid ligaments. The non-local GTN model contains an intrinsic length scale related to the size of the secondary voids. Hence, the ratio of the size of the primary and that of the secondary voids can be varied. The results show that small secondary voids can toughen the material. Such a behavior is in contrast to the prediction of cell model simulations. A theoretical reasoning of this effect and conclusions are given.  相似文献   
68.
在第1 部分,讨论弹性力学的圣维南原理在线弹性断裂力学中的应用,举例说明它的误用会引起很大的误差. 在第2 部分,讨论塑性力学中的Tresca 屈服面和Mises 屈服面的形状和大小,并推广到对Mohr-Coulomb 屈服面和Drucker-Prager 屈服面的描述,给出主应力空间中Mises 屈服面和Tresca 屈服面的形状和大小的三维图象,并以此更正和补充现有的弹塑性力学教材.  相似文献   
69.
70.
The paper presents analytical solutions for the equal-rate mechanochemical wear of an ideal elastic–plastic thick-walled cylindrical tube subjected to any combination of internal and external pressure. The rates of corrosion at the inner and outer surfaces are supposed to be proportional to the equivalent tensile stress at the surface involved when it exceeds a given threshold. Furthermore, the corrosion rate can decay exponentially with time. The obtained solutions allow to assess the time of the initial yielding at the bore of the tube and the time of fully plastic yielding. Calculations showed that the time of plastic-zone propagation throughout the tube wall can be much greater than the length of the pure elastic stage. The proposed analytical solutions are to be used for design purposes and as benchmark solutions for numerical analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号