首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1130篇
  免费   170篇
  国内免费   157篇
化学   592篇
晶体学   11篇
力学   230篇
综合类   19篇
数学   109篇
物理学   496篇
  2024年   2篇
  2023年   13篇
  2022年   39篇
  2021年   35篇
  2020年   44篇
  2019年   29篇
  2018年   38篇
  2017年   36篇
  2016年   52篇
  2015年   44篇
  2014年   56篇
  2013年   84篇
  2012年   63篇
  2011年   71篇
  2010年   51篇
  2009年   59篇
  2008年   74篇
  2007年   66篇
  2006年   69篇
  2005年   63篇
  2004年   58篇
  2003年   46篇
  2002年   54篇
  2001年   35篇
  2000年   30篇
  1999年   29篇
  1998年   29篇
  1997年   44篇
  1996年   26篇
  1995年   24篇
  1994年   19篇
  1993年   14篇
  1992年   7篇
  1991年   7篇
  1990年   12篇
  1989年   3篇
  1988年   6篇
  1987年   1篇
  1986年   8篇
  1985年   3篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1981年   4篇
  1979年   1篇
  1978年   1篇
排序方式: 共有1457条查询结果,搜索用时 46 毫秒
201.
Fad?lo?lu et al. and Tajbakhsh et al. consider supplier diversification in an EOQ type inventory setting with multiple suppliers and binomial yield and show that working with a single supplier is always optimal. In this short note, we present an alternative and more elegant proof of the optimality of sole sourcing in the EOQ model with general random yield.  相似文献   
202.
An AIEgen decorated porphyrin(TPETPyP) was easily obtained through a one-step reaction.The bulky TPE in TPETPyP greatly impeded the intermolecular π-π stacking of the porphyrin core,which significantly suppressed aggregation-caused quenching(ACQ) effect of TPETPyP in aqueous solution.The four pyridinium salts formed in TPETPyP also render the whole molecule water solubility,which eliminated its aggregation.TPETPyP exhibited ~1 O_2 quantum yield as high as 0.85 in PBS.Moreover,it also showed high binding affinity to proteins,the major biotarget of ~1 O_2.The high ~1 O_2 quantum yield plus the great binding ability of TPETPyP toward proteins makes it a highly-efficient protein photocleaving agent.Protein electrophoresis experiments demonstrated that TPETPyP can photocleave BSA upon visible light irradiation,indicating that TPETPy P can act as a promising photosensitizer(PS) in PDT.The work here will provide a facile strategy to utilize AIEgens modified traditional PSs for photodynamic therapy(PDT).  相似文献   
203.
The molar extinction coefficient, oscillator strength, natural fluorescence lifetime, and fluorescence quantum yield have been determined for 9,10-diiodoanthracene in ethanol at 20°C. The temperature effect on the quantum yield was studied in the range 120–300 K. The fluorescence lifetime was measured at 77 K. During glassification of ethanol, the fluorescence intensity of 9,10-diiodoanthracene increases by more than 50 times due to the activation nature of the intersystem crossing from the S1(1B2u+) state. The activation energy and pre-exponential factor for the probability of the intersystem {ie319-01}-crossing are found. The long-wavelength shift of the absorption spectrum with increasing bulk polarizability of the solvent is interpreted as evidence of changes in the nonspecific interactions. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 75, No. 3, pp. 304–308, May–June, 2008.  相似文献   
204.
Two novel complexes of Sm(III) and Dy(III) with mixed oxydiacetate (ODA) and 1,10-phenanthroline (phen) ligands were synthesized and their structure and luminescence properties were characterized. The complexes of [Ln(ODA)(phen)·4H2O]Cl·5H2O [Ln=Sm and Dy] crystallize in the monoclinic space group P21/n with Sm: a=12.3401(14) Å, b=16.821(2), c=12.6847(11) Å, β=107.939(10)°, V=2505.0(5) Å3, Z=4 and ρ=1.841 mg/m3, and with Dy: a=12.289(7) Å, b=16.805(6) Å, c=12.705(4) Å, β=108.144(18)°, V=2493.4(19) Å3, Z=4 and ρ=1.786 mg/m3. The complexes of [Sm(ODA)(phen)·4H2O]+ and [Dy(ODA)(phen)·4H2O]+ excited by UV light produce orange red and lightly white emissions, respectively, via the nonradiative energy transfer from phen to the metals. The quantum yield of the sensitized luminescence of [Dy(ODA)(phen)·4H2O]+ (Q=19%) is much greater than that of [Sm(ODA)(phen)·4H2O]+ (Q=1.4%). The luminescence decay times of the complexes were in a few microsecond range and independent of temperature.  相似文献   
205.
Iodine release in potassium iodide solution has been investigated under the irradiations of ultrasound and visible light respectively and simultaneously. We have observed that the amount of iodine liberated under the combined irradiation of ultrasound and visible light is larger than the sum of that under the respective irradiations of ultrasound and visible light, indicating a synergistic effect of ultrasound and visible light irradiations. Based on the investigation of the reaction kinetics of iodine liberated, we have ascribed the synergistic effect to the perfect stirring of the photochemical reactor induced by the applying simultaneous ultrasound. The ideal stirring can result in the homogenization of the primary light effect in the whole reaction medium, which induces the acceleration of the photochemical reaction. On behavior of our knowledge, there are few reports on the investigations of utilizing the combination of ultrasonic energy and light energy to accelerate the reaction yield and rate as well as the kinetics of the reaction.  相似文献   
206.
The L2,3-M2,3V resonant Auger electron spectroscopy (RAES) spectrum of Ti metal measured by Le Fêvre et al. [P. Le Fêvre, J. Danger, H. Magnan, D. Chandesris, J. Jupille, S. Bourgeois, M.-A. Arrio, R. Gotter, A. Verdini, A. Morgante, Phys. Rev. B69 (2004) 155421] is analyzed in the light of relaxation and decay of the resonantly excited L2,3-hole states. The relaxation time of the resonantly excited L2,3-hole state to the fully relaxed (screened) one is much shorter than the L2,3-hole Auger decay time, whereas the participant Coster–Kronig (CK) decay time of the resonantly excited L2-hole state to the fully relaxed L3-hole state at the L2 resonance is as short as the relaxation time of the resonantly excited L2-hole state to the fully relaxed one. The excited electron is predominantly either rapidly decoupled from the L2,3-hole decay or annihilated by the participant CK decay. Thus, near the L2,3 edges the L2,3-M2,3V RAES spectral peak appears at constant kinetic energy. The L2,3-M2,3V RAES spectrum shows a normal L2,3-M2,3V Auger decay profile not modulated by the density of empty d states probed by the resonant excitation. Not only the relaxation time but also the participant CK decay time depends on photon energy because they depend on the density of empty d states probed by the resonant excitation. As a result, the L2,3 X-ray absorption spectroscopy spectral line broadening depends on photon energy.  相似文献   
207.
Though polynorbornene synthesized by ring-opening metathesis polymerization has an intrinsically all-cis configuration of the cyclopentylene backbone rings, a fraction of these rings can be epimerized to the trans configuration during hydrogenation over suitable catalysts. By varying the method of hydrogenation, semicrystalline hydrogenated polynorbornenes (hPNs) with trans levels between 0 and 36% were obtained. With increasing trans content, the glass transition temperature, melting point, and enthalpy of melting decrease modestly. By contrast, the temperature at which the hPN crystal transitions into a rotationally disordered polymorph varies strongly with trans content, ranging from 126 °C (all-cis) to 71 °C at 27% trans; at trans contents of 34% and above, no rotationally-ordered phase is observed at any temperature. The room-temperature Young's modulus shows no dependence on trans content, while the yield stress drops by 20% at 1% trans content and slowly decreases further with additional epimerization. The temperature dependence of the Young's modulus differs for trans-containing versus all-cis polymers, while the temperature dependence of the yield stress is set by the polymorph type (rotationally ordered vs. disordered).  相似文献   
208.
Reproducible and uncharacteristic tensile stress–strain behavior of cured glassy epoxy‐amine networks produces distinctive fracture surfaces. Test specimens exhibiting plastic flow result in mirror‐like fracture surfaces, whereas samples that fail during yield or strain softening regions possess nominal mirror‐mist‐hackle topography. Atomic force microscopy and scanning electron microscopy reveal branched nodule morphologies in the 50‐nm size scale that may be responsible for the unusual tensile properties. Current hypothesis is that plastic flow of the glassy thermoset occurs through the existence and deformation of these nodular nanostructures. The thermal cure profile of the epoxy‐amine thermoset affects the size and formation of the nodular nanostructure. Eliminating vitrification during thermoset polymerization forms a more continuous phase, reduction in size of the nodules, and eliminates the capacity of the material to yield in plastic flow. This maximizes nanostructure connectivity of the glassy epoxy‐amine thermoset and reduces strain to failure significantly. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1333–1344.  相似文献   
209.
210.
ABSTRACT

The yield drop phenomenon observed in the Ti–15V-3Al–3Sn-3Cr (Ti–15–3) beta-titanium alloy and its anomalous behaviour in the boron and carbon added Ti–15–3 alloys have been studied. While the base and the carbon containing alloys exhibit yield drop, the boron containing alloy with smaller grain size than base alloy does not appear to show this phenomenon. Tensile tests were interrupted at different stress levels followed by analyses of slip lines and sub-structural characteristics using scanning and transmission electron microscopes to understand this anomalous yield point phenomenon. Infrared thermal imaging technique was used to map the strain localisation and the spatiotemporal evolution of deformation along the gauge length of the specimens during the tensile tests. Deformation in these alloys initiates only in a few grains. Pile-up of dislocations in these grains subsequently triggers the formation of dislocations in other grains and their rapid multiplications. The spreading of deformation by the generation of dislocations from pile up dislocations in one grain to neighbouring un-deformed grains and their rapid multiplication to new regions influence the yield drop phenomenon and its characteristics. It is shown in this study that microscopic instability in the grain level is a necessary, but not the sufficient condition for the manifestation of macroscopic instability during tensile deformation in polycrystalline materials. The presence of boride particles at grain boundaries restricts the slip transfer across the grains as well as the spreading of deformation to new regions, which causes the suppression of yield drop in the boron containing alloy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号