首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   1篇
  国内免费   4篇
化学   69篇
物理学   2篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2017年   2篇
  2014年   1篇
  2013年   2篇
  2011年   3篇
  2009年   1篇
  2008年   3篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   3篇
  2003年   5篇
  2002年   3篇
  2001年   6篇
  2000年   5篇
  1999年   4篇
  1998年   3篇
  1997年   5篇
  1996年   2篇
  1995年   4篇
  1992年   1篇
  1990年   2篇
  1988年   1篇
  1985年   1篇
  1978年   1篇
排序方式: 共有71条查询结果,搜索用时 15 毫秒
11.
The effect of the oxygen transfer coefficient on the production of xylitol by biocon version of xylose present in sugarcane bagasse hemicellulosic hydrolysate using the yeast Candiada guilliermondii was investigated. Continuous cultivation was carried out in a 1.25-L fermentor at 30°C, pH 5.5, 300 rpm, and a dilution rate of 0.03/h, using oxygen transfer coefficients of 10,20, and 30/h. The results showed that the microbial xylitol production (11 g/L) increased by 108% with the decrease in the oxygen volumetric transfer coefficient from 30 to 20/h. The maximum values of xylitol productivity (0.7g/[L…h]) and yield (0.58 g/g) were obtained at k L a 20/h.  相似文献   
12.
采用1-苯基-甲基-吡唑啉酮(PMP)柱前衍生化-反相高效液相色谱(HPLC)法建立了8种常见单糖的分离模式,并用于木糖结晶母液单糖组成的定量分析.结果表明:木糖结晶母液至少由甘露糖、鼠李糖、纤维二糖、葡萄糖、半乳糖、木糖、阿拉伯糖及岩藻糖8种单糖组成,其中以葡萄糖、半乳糖、木糖和阿拉伯糖为主.以峰高定量,8种单糖的浓...  相似文献   
13.
14.
Milled corncob samples were mixed with water and heated to obtain a liquid phase containing oligosaccharides, sugars, and acetic acid as main reaction products (autohydrolysis reaction). To hydrolyze the sugar oligomers to the correspondent monomers, sulfuric acid was added to the autohydrolysis liquors to reach 0.5–2 wt% of solution, and the reaction media were heated at 101.5–135°C. With this operational procedure, sugar solutions suitable as fermentation media (containing xylose as the major component) were obtained. The kinetics of the posthydrolysis step was characterized on the basis of experimental data concerning the time courses of the concentrations of xylooligosaccharides, xylose, furfural, and acetic acid. The concentrations of other reaction byproducts (glucose or arabinose) were also measured.  相似文献   
15.
Candida guilliermondii FTI 20037 was cultured in sugarcane bagasse hydrolysate supplemented with 2.0 g/L of (NH4)2SO4, 0.1 g/L of CaCl2·2H2O, and 20.0 g/L of rice bran at 35°C; pH 4.0; agitation of 300 rpm; and aeration of 0.4, 0.6, or 0.8 vvm. The high xylitol production (20.0 g/L) and xylose reductase (XR) activity (658.8 U/mg of protein) occurred at an aeration of 0.4 vvm. Under this condition, the xylitol dehydrogenase (XD) activity was low. The apparent K M for XR and XD against substrates and cofactors were as follows: for XR, 6.4×10−2 M (xylose) and 9.5×10−3 mM (NADPH); for XD, 1.6×10−1 M (xylitol) and 9.9×10−2 mM (NAD+). Because XR requires about 10-fold less xylose and cofactor than XD for the condition in which the reaction rate is half of the V max, some interference on the overall xylitol production by the yeast could be expected.  相似文献   
16.
The thermochemical behaviour of sugars (D- and DL-arabinose, D- and DL-xylose and D-mannose) and sugar alcohol (D- and DL-arabinitol) was investigated by TG and pyrolysis-gas chromatography with mass-selective detection (Py-GC/MSD). The temperature of pyrolysis was 500 and 550°C. The TG-curves were measured both in air and nitrogen atmospheres, from 25 to 700°C with the heating rate of 2°C min-1. In each case, the main pyrolysis products were classified into the following compound groups: (i) furanes, (ii) pyranes, (iii) cyclopentanes, (iv) cyclohexanes, (v) anhydroglucopyranoses, (vi) dianhydroglucopyranoses and (vii) saturated fatty acids. For example, the main peaks of the chromatograms of pentoses (arabinose, xylose), hexose (mannose) and sugar alcohols (arabinitols) were different. The greatest peak of pentoses in gas-chromatogram was 2-furancarboxaldehyde and that of hexose was (2H)-furan-3-one. The greatest peak of arabinitols at pyrolysis temperature of 500°C was furan methanol and at 550°C a-angeligalactone. 5-hydroxymethyl-2-furan carboxaldehyde was found only in the pyrolysis of D-mannose (hexose). The former study showed that it was not found in pyrolysis of pentoses. The amount of CO2 and H2O was not determined. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
17.
In this paper, we have performed the Lipozyme 435-catalyzed synthesis of xylose oleate in methyl ethyl ketone (MEK) from xylose and oleic acid. The effects of substrates’ molar ratios, reaction temperature, reaction time on esterification rates, and Lipozyme 435 reuse were studied. Results showed that an excess of oleic acid (xylose: oleic acid molar ratio of 1:5) significantly favored the reaction, yielding 98% of xylose conversion and 31% oleic acid conversion after 24 h-reaction (mainly to xylose mono- and dioleate, as confirmed by mass spectrometry). The highest Lipozyme 435 activities occurred between 55 and 70 °C. The predicted Ping Pong Bi Bi kinetic model fitted very well to the experimental data and there was no evidence of inhibitions in the range assessed. The reaction product was purified and presented an emulsion capacity close to that of a commercial sugar ester detergent. Finally, the repeated use of Lipozyme 435 showed a reduction in the reaction yields (by 48 and 19% in the xylose and oleic acid conversions, respectively), after ten 12 h-cycles.  相似文献   
18.
The fermentation characteristics of a recombinant strain of Zymomonas mobilis ZM4(pZB5) capable of converting both glucose and xylose to ethanol have been further investigated. Previous studies have shown that the strain ZM4(pZB5) was capable of converting a mixture o 65 g/L of glucose and 65 g/L of xylose to 62 g/L of ethanol in 48 h with an overall yield of 0.46 g/g. Higher sugar concentrations (e.g., 75/75 g/L) resulted in incomplete xylose utilization (80 h). In the present study, further kinetic evaluations at high sugar levels are reported. Acetate inhibition studies and evaluation of temperature and pH effects indicated increased maximum specific uptake rates of glucose and xylose under stressed conditions with increased metabolic uncoupling. A high-productivity system was developed that involved a membrane bioreactor with cell recycling. At sugar concentrations of approx 50/50 g/L of glucose/xylose, an ethanol concentration of 50 g/L, an ethanol productivity of approx 5 g/(L·h), and a yield (Y p/s) of 0.50 g/g were achieved. Decreases in cell viability were found in this system after attainment of an initial steady state (40–60 h); a slow bleed of concentrated cells may be required to overcome this problem.  相似文献   
19.
Oxygen availability is the most important environmental parameter in the production of xylitol by yeasts, directly affecting yields and volumetric productivity. This work evaluated the cell behavior in fermentations carried out with different dissolved oxygen concentrations (0.5–30.0% of saturation), as well as a limited oxygen restriction (0% of saturation), at several oxygen volumetric transfer coefficients (12 ≤ k L a ≤ 70 h−1). These experiments allowed us to establish the specific oxygen uptake rate limits to ensure high yields and volumetric productivity. When oxygen availability was limited, the specific oxygen uptake rate values were between 12 and 26 mg of O2/of g cell·h, resulting in a yield of 0.71 g of xylitol/xylose consumed, and 0.85 g/[L·h] for the volumetric productivity. According to the results, the effective control of the specific oxygen uptake rate makes it possible to establish complete control over this fermentative process, for both cell growth and xylitol production.  相似文献   
20.
Efficient utilization of the pentosan fraction of hemicellulose from lignocellulosic feedstocks offers an opportunity to increase the yield and to reduce the cost of producing fuel ethanol. During prehydrolysis (acid hydrolysis or autohydrolysis of hemicellulose), acetic acid is formed as a consequence of the deacetylation of the acetylated moiety of hemicellulose. Recombinant Escherichia coli B (ATCC 11303), carrying the plasmid pLO1297 with pyruvate decarboxylase and alcohol dehydrogenase II genes from Zymomonas mobilis (CP4), converts xylose to ethanol with a product yield that approaches theoretical maximum. Although other pentose-utilizing microorganisms are inhibited by acetic acid, the recombinant E. coli displays a high tolerance for acetic acid. In xylose fermentations with a synthetic medium (Luria broth), where the pH was controlled at 7, neither yield nor productivity was affected by the addition of 10.7 g/L acetic acid. Nutrient-supplemented, hardwood (aspen) hemicellulose hydrolysate (40.7 g/L xylose) was completely fermented to ethanol (16.3 g/L) in 98 h. When the acetic acid concentration was reduced from 5.6 to 0.8 g/L, the fermentation time decreased to 58 h. Overliming, with Ca(OH)2 to pH 10, followed by neutralization to pH 7 with sulfuric acid and removal of insolubles, resulted in a twofold increase in volumetric productivity. The maximum productivity was 0.93 g/L/h. The xylose-to-ethanol conversion efficiency and productivity in Ca(OH)2-treated hardwood prehydrolysate, fortified with only mineral salts, were 94% and 0.26 g/L/h, respectively. The recombinant E. coli exhibits a xylose-to-ethanol conversion efficiency that is superior to that of other pentose-utilizing yeasts currently being investigated for the production of fuel ethanol from lignocellulosic materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号