首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   319篇
  免费   68篇
  国内免费   219篇
化学   515篇
晶体学   23篇
力学   3篇
综合类   3篇
物理学   62篇
  2024年   5篇
  2023年   15篇
  2022年   22篇
  2021年   35篇
  2020年   47篇
  2019年   44篇
  2018年   31篇
  2017年   45篇
  2016年   22篇
  2015年   17篇
  2014年   19篇
  2013年   53篇
  2012年   23篇
  2011年   18篇
  2010年   34篇
  2009年   14篇
  2008年   28篇
  2007年   20篇
  2006年   23篇
  2005年   14篇
  2004年   18篇
  2003年   15篇
  2002年   10篇
  2001年   17篇
  2000年   6篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
排序方式: 共有606条查询结果,搜索用时 15 毫秒
81.
刘芳  姜振益 《物理学报》2013,62(19):193103-193103
基于密度泛函理论的第一性原理平面波赝势方法, 运用Vasp方法计算了Eu, N掺杂及Eu/N共掺杂锐钛矿TiO2的结构, 并分析了其电子及光学性质. 通过计算发现有一些Eu的4f态电子在Eu掺杂锐钛矿TiO2的体系的费米能级附近出现杂质能级, 并且N掺杂会使得锐钛矿TiO2的禁带宽度减小. 对于共掺杂体系而言, Eu/N共掺杂的协同效应能导致锐钛矿TiO2的晶格畸变及禁带宽度减小. 与此同时, 计算得到的光吸收谱表明Eu/N混合掺杂锐钛矿TiO2展现出了明显的光谱吸收边缘红移. 这些计算结果表明Eu/N共掺杂锐钛矿TiO2具有优良的光催化活性. 关键词: 2')" href="#">TiO2 共掺杂 可见光催化剂 密度泛函理论  相似文献   
82.
With the ever‐increasing concerns on environmental pollution and energy crisis, it is of great urgency to develop high‐performance photocatalyst to eliminate organic pollutants from wastewater and produce hydrogen via water splitting. Herein, a polypyridyl‐based mixed covalent CuI/II complex with triangular {Cu3} and rhombic {Cu2Cl4} subunits alternately extended by mixed SCN and Cl heterobridges [Cu4(DNP)(SCN)Cl4]n ( 1 ) [DNP = 2,6‐bis(1,8‐naphthyridine‐2‐yl)pyridine] was solvothermally synthesized and employed as a dual‐functional co‐photocatalyst. Resulting from a narrowed band‐gap of 1.07 eV with suitable redox potential and unsaturated CuI/II sites, the complex together with H2O2 can effectively degrade Rhodamine B and methyl orange up to 87.4 and 88.2 %, respectively. Meanwhile, the complex mixed with H2PtCl6 can also accelerate the photocatalytic water splitting in the absence of a photosensitizer with the hydrogen production rate of 27.5 μmol · g–1 · h–1. These interesting findings may provide informative hints for the design of the multiple responsive photocatalysts.  相似文献   
83.
毛晓明  张娜娜  李敏  李燕 《化学通报》2019,82(5):436-440
以五水合硝酸铋和氯化钾为原料,通过水热法合成了BiOCl光催化剂,并对其结构进行表征,考察了前驱体的pH对催化剂结构和降解8-羟基喹啉活性的影响。结果表明,随前驱体pH的增加,催化剂[001]晶面暴露程度下降,带隙能减小,且催化反应活性降低,这可归因于低的带隙能和高的光生载流子复合效率。进一步考察降解体系pH对催化剂反应活性的影响,结果表明,降解体系pH影响8-羟基喹啉在催化剂表面的吸附行为,进而影响催化剂的反应活性。  相似文献   
84.
戴建玲  雷文龙  刘强 《化学学报》2019,77(9):911-915
以CuI为铜源, 通过原位形成光催化剂的途径, 实现了室温下可见光驱使铜催化溴二氟乙酸乙酯、溴二氟酰胺等对芳烃及杂芳烃的二氟烷基化反应. 该反应条件温和、原料廉价易得、底物适用范围广、产率较高, 为合成二氟烷基(杂)芳烃化合物提供了一种方法. 机理研究表明, 该反应可能经历了单电子转移的自由基反应历程.  相似文献   
85.
采用溶剂热法制备氨基功能化Fe_3O_4磁性材料(NH_2@nFe_3O_4),通过浸渍法将磺化酞菁铝(AlPcS)负载于NH_2@nFe_3O_4。材料的傅立叶红外、漫反射、X射线衍射、扫描电镜、透射电镜、振动磁强计等表征表明:AlPcS主要通过静电作用与NH_2@nFe_3O_4结合,AlPcS-NH_2@nFe_3O_4平均粒径为127 nm,饱和磁化强度为75.3 emu·g-1。在可见光和空气作用下,该功能化磁性材料对降解弱碱性水溶液中环境内分泌干扰物双酚A(BPA)具有较高的光敏化活性。随着AlPcS负载量的增加活性呈先升高后下降的趋势,负载量为3.4%(质量分数)的复合材料性能最佳,反应60 min后,20.0 mg·L-1BPA降解率为96%;循环使用10次,BPA降解率仍保持93%以上。通过NaN3猝灭实验探讨了反应机理,证实1O2是光敏化过程中的主要活性物种。  相似文献   
86.
Pt particles in a uniform dispersion were successfully synthesized on single-site photocatalyst (Ti-containing mesoporous silica (Ti-HMS)) under UV-light irradiation by a photo-assisted deposition (PAD) method. Using an aqueous solution of H2PtCl6 as a precursor, the nano-sized Pt metal particles were deposited directly on the photo-excited tetrahedrally coordinated titanium oxide moieties within the framework of mesoporous silica (PAD-Pt/Ti-HMS). The Pt catalysts were characterized by means of XRD, Pt LIII-edge XAFS, CO adsorption, and TEM analysis. It was demonstrated that Pt particles had mean diameter of 4 nm in a narrow size distribution. Meanwhile, Pt particles loaded by a conventional impregnation method (imp-Pt/Ti-HMS) showed a wide size distribution ranging from 2 to 30 nm. The PAD-Pt/Ti-HMS catalyst was more active in the CO oxidation than the conventional impregnated imp-Pt/Ti-HMS catalyst. It is suggested that the PAD method using single-site photocatalyst is a useful and unique technique to prepare fine and uniform Pt nanoparticles.  相似文献   
87.
《Arabian Journal of Chemistry》2020,13(11):8424-8457
Nowadays, increasing extortions regarding environmental problems and energy scarcity have stuck the development and endurance of human society. The issue of inorganic and organic pollutants that exist in water from agricultural, domestic, and industrial activities has directed the development of advanced technologies to address the challenges of water scarcity efficiently. To solve this major issue, various scientists and researchers are looking for novel and effective technologies that can efficiently remove pollutants from wastewater. Nanoscale metal oxide materials have been proposed due to their distinctive size, physical and chemical properties along with promising applications. Cupric Oxide (CuO) is one of the most commonly used benchmark photocatalysts in photodegradation owing to the fact that they are cost-effective, non-toxic, and more efficient in absorption across a significant fraction of solar spectrum. In this review, we have summarized synthetic strategies of CuO fabrication, modification methods with applications for water treatment purposes. Moreover, an elaborative discussion on feasible strategies includes; binary and ternary heterojunction formation, Z-scheme based photocatalytic system, incorporation of rare earth/transition metal ions as dopants, and carbonaceous materials serving as a support system. The mechanistic insight inferring photo-induced charge separation and transfer, the functional reactive radical species involved in a photocatalytic reaction, have been successfully featured and examined. Finally, a conclusive remark regarding current studies and unresolved challenges related to CuO are put forth for future perspectives.  相似文献   
88.
A good photocatalyst with high efficiency can be synthesized easily using eco-friendly materials and processes. Our synthesized samples exhibit all of the aforementioned features. In this work, manganese co-doped ZnO at different weight percentages (3, 6, 9, and 15 wt.%) with and without 1.5 wt.% aluminum was synthesized by hydrothermal method, and their photocatalytic activity in aqueous solutions of methyl orange (MO) was investigated under visible light. The structural and optical properties of the samples were characterized using X-ray powder diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis, and diffuse reflectance spectroscopy. In this work, Mn2+ ions in the 9%Mn/ZnO sample and Mn2+, Al3+ ions in the (9%Mn, 1.5%Al)/ZnO sample calcined at 800 °C were replaced instead with some Zn2+ ions in hexagonal wurtzite structures of ZnO. These structures were found next to each other in the form of a hexagonal shape that created 3D-hexagonal-like ZnO nanostructures. Finally, nanoparticles (NPs) and nano hexagonal-like ZnO nanostructures were, respectively, dispersed on the surface of 3D-hexagonal-like structure of 9%Mn/ZnO and (9%Mn, 1.5%Al)/ZnO. Diffuse reflectance spectroscopy analysis showed that the (9%Mn, 1.5%Al)/ZnO sample had more light absorption than 9%Mn/ZnO. However, contrary to our expectations, the 9%Mn/ZnO sample had better decolorization efficiency (94%) after 60 min under visible light, which could be attributed to a significant increase in the level of recombination by the aluminum ions.  相似文献   
89.
Polyaniline (PANI)/MIL-88A(Fe) (Px@M88) composites were constructed through a simple one-pot hydrothermal method. The photocatalytic and photo-Fenton activities of Px@M88 composites toward reduction of Cr(VI) and degradation organic pollutants were explored by white light irradiation. PANI, as a conductive polymer, can improve MIL-88A(Fe)’s conductivity and the efficiency of photogenerated e–h+ pair separation. In the presence of H2O2, a photo-Fenton reaction occured to boost the degradation efficiency of organic pollutants like bisphenol A. In addition, P9@M88 showed excellent recycling and stability in cycling experiments. Finally, a possible reaction mechanism for photocatalytic degradation was proposed and verified by X-ray photoelectron spectroscopy and electron spin resonance determination and electrochemical characterizations.  相似文献   
90.
Introducing plasmonic metals into semiconductor materials has been proven to be an attractive strategy for enhancing photocatalytic activity in the visible region. In this work, a novel and efficient Ag/Ag2WO4/g‐C3N4 (AACN) ternary plasmonic photocatalyst was successfully synthesized using a facile one‐step in situ hydrothermal method. The composition, structure, morphology and optical absorption properties of AACN were investigated using X‐ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and UV–visible diffuse reflectance spectroscopy, respectively. Photocatalytic performance of AACN was evaluated via rhodamine B and tetracycline degradation. The results indicated that AACN had excellent photocatalytic performance for rhodamine B degradation with a rate constant of 0.0125 min?1, which was higher than those of Ag2WO4 and Ag/Ag2WO4. Characterization and photocatalytic tests showed that the strong coupling effect between the Ag/Ag2WO4 nanoparticles and the exfoliated ultrathin g‐C3N4 nanosheets was superior for visible‐light responsivity and reduced the recombination rate of photogenerated electrons and holes. A proposed mechanism is also discussed according to the band energy structure and the experimental results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号