首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   13篇
  国内免费   1篇
化学   106篇
数学   3篇
物理学   7篇
  2023年   2篇
  2022年   3篇
  2021年   7篇
  2020年   7篇
  2019年   4篇
  2018年   2篇
  2017年   4篇
  2016年   5篇
  2015年   4篇
  2014年   4篇
  2013年   7篇
  2012年   8篇
  2011年   5篇
  2010年   11篇
  2009年   6篇
  2008年   10篇
  2007年   5篇
  2006年   3篇
  2005年   8篇
  2004年   3篇
  2003年   3篇
  2000年   2篇
  1989年   2篇
  1986年   1篇
排序方式: 共有116条查询结果,搜索用时 0 毫秒
1.
Gradiflow is new technology allowing purification of important blood proteins from viral contaminated plasma. Protein purification is based on unique scalable tangential-flow preparative electrophoresis, and is distinct from current technology because protein purification and virus removal are performed in the same step. This one-step removal and purification exploits both the size and charge of target proteins. The medically important blood proteins, immunoglobulin G (IgG) and alpha-1-antitrypsin, were chosen to demonstrate the ability of this process to purify proteins from contaminated plasma. Clearance factors achieved by infectivity assays and polymerase chain reaction (PCR) that meet regulatory requirements demonstrated removal of canine parvovirus (CPV). CPV is a model virus for pathogenic nonenveloped viruses, including parvovirus B19, not adequately removed or inactivated by most processes currently in practice. The recovery of proteins from plasma with high purity, recovery, and function, while simultaneously removing viruses, provides blood products with a level of purity compatible with clinical use more quickly and cheaply than available techniques.  相似文献   
2.
Pyrimidine nucleoside analogues are widely used to treat infections caused by the human immunodeficiency virus (HIV) and DNA viruses from the herpes family. It has been shown that 5-substituted uracil derivatives can inhibit HIV-1, herpes family viruses, mycobacteria and other pathogens through various mechanisms. Among the 5-substituted pyrimidine nucleosides, there are not only the classical nucleoside inhibitors of the herpes family viruses, 2′-deoxy-5-iodocytidine and 5-bromovinyl-2′-deoxyuridine, but also derivatives of 1-(benzyl)-5-(phenylamino)uracil, which proved to be non-nucleoside inhibitors of HIV-1 and EBV. It made this modification of nucleoside analogues very promising in connection with the emergence of new viruses and the crisis of drug resistance when the task of creating effective antiviral agents of new types that act on other targets or exhibit activity by other mechanisms is very urgent. In this paper, we present the design, synthesis and primary screening of the biological activity of new nucleoside analogues, namely, 5′-norcarbocyclic derivatives of substituted 5-arylamino- and 5-aryloxyuracils, against RNA viruses.  相似文献   
3.
4.
Viral infections pose a persistent threat to human health. The relentless epidemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global health problem, with millions of infections and fatalities so far. Traditional approaches such as random screening and optimization of lead compounds by organic synthesis have become extremely resource- and time-consuming. Various modern innovative methods or integrated paradigms are now being applied to drug discovery for significant resistance in order to simplify the drug process. This review provides an overview of newly emerging antiviral strategies, including proteolysis targeting chimera (PROTAC), ribonuclease targeting chimera (RIBOTAC), targeted covalent inhibitors, topology-matching design and antiviral drug delivery system. This article is dedicated to Prof. Dr. Erik De Clercq, an internationally renowned expert in the antiviral drug research field, on the occasion of his 80th anniversary.  相似文献   
5.
6.
7.
We developed a new method for real‐time, three‐dimensional tracking of fluorescent particles. The instrument is based on a laser‐scanning confocal microscope where the focus of the laser beam is scanned or orbited around the particle. Two confocal pinholes are used to simultaneously monitor regions immediately above and below the particle and a feedback loop is used to keep the orbit centered on the particle. For moderate count rates, this system can track particles with 15 nm spatial resolution in the lateral dimensions and 50 nm in the axial dimension at a temporal resolution of 32 ms. To investigate the interaction of the tracked particles with cellular components, we have combined our orbital tracking microscope with a dual‐color, wide‐field setup. Dual‐color fluorescence wide‐field images are recorded simultaneously in the same image plane as the particle being tracked. The functionality of the system was demonstrated by tracking fluorescent‐labeled artificial viruses in tubulin‐eGFP expressing HUH7 cells. The resulting trajectories can be used to investigate the microtubule network with super resolution.  相似文献   
8.
9.
10.
Many small biological objects, such as viruses, survive in a water environment and cannot remain active in dry air without condensation of water vapor. From a physical point of view, these objects belong to the mesoscale, where small thermal fluctuations with the characteristic kinetic energy of kBT (where kB is the Boltzmann’s constant and T is the absolute temperature) play a significant role. The self-assembly of viruses, including protein folding and the formation of a protein capsid and lipid bilayer membrane, is controlled by hydrophobic forces (i.e., the repulsing forces between hydrophobic particles and regions of molecules) in a water environment. Hydrophobic forces are entropic, and they are driven by a system’s tendency to attain the maximum disordered state. On the other hand, in information systems, entropic forces are responsible for erasing information, if the energy barrier between two states of a switch is on the order of kBT, which is referred to as Landauer’s principle. We treated hydrophobic interactions responsible for the self-assembly of viruses as an information-processing mechanism. We further showed a similarity of these submicron-scale processes with the self-assembly in colloidal crystals, droplet clusters, and liquid marbles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号