首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11594篇
  免费   73篇
  国内免费   60篇
化学   4796篇
晶体学   14篇
力学   713篇
数学   4030篇
物理学   2174篇
  2024年   117篇
  2023年   690篇
  2022年   420篇
  2021年   412篇
  2020年   1457篇
  2019年   1071篇
  2018年   927篇
  2017年   756篇
  2016年   733篇
  2015年   563篇
  2014年   741篇
  2013年   2836篇
  2012年   498篇
  2011年   29篇
  2010年   32篇
  2009年   22篇
  2008年   35篇
  2007年   31篇
  2006年   24篇
  2005年   78篇
  2004年   91篇
  2003年   37篇
  2002年   16篇
  2001年   12篇
  2000年   7篇
  1999年   6篇
  1998年   14篇
  1997年   5篇
  1996年   4篇
  1995年   7篇
  1994年   2篇
  1993年   3篇
  1992年   4篇
  1985年   2篇
  1984年   4篇
  1983年   3篇
  1982年   4篇
  1981年   10篇
  1980年   2篇
  1979年   4篇
  1978年   5篇
  1977年   6篇
  1976年   1篇
  1975年   1篇
  1974年   3篇
  1973年   2篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
《Applied Mathematical Modelling》2014,38(21-22):5022-5032
The paper explores the impacts of cross-diffusion on the formation of spatial patterns in a ratio-dependent predator–prey system with zero-flux boundary conditions. Our results show that under certain conditions, cross-diffusion can trigger the emergence of spatial patterns which is however impossible under the same conditions when cross-diffusion is absent. We give a rigorous proof that the model has at least one spatially heterogenous steady state by means of the Leray–Schauder degree theory. In addition, numerical simulations are performed to visualize the complex spatial patterns.  相似文献   
992.
《Applied Mathematical Modelling》2014,38(17-18):4277-4290
The inhomogeneous generalized population balance equation, which is discretized with the direct quadrature method of moment (DQMOM), is solved to predict the bubble size distribution (BSD) in a vertical pipe flow. The proposed model is compared with a more classical approach where bubbles are characterized with a constant mean size. The turbulent two-phase flow field, which is modeled using a Reynolds-Averaged Navier–Stokes equation approach, is assumed to be in local equilibrium, thus the relative gas and liquid (slip) velocities can be calculated with the algebraic slip model, thereby accounting for the drag, lift, and lubrication forces. The complex relationship between the bubble size distribution and the resulting forces is described accurately by the DQMOM. Each quadrature node and weight represents a class of bubbles with characteristic size and number density, which change dynamically in time and space to preserve the first moments of the BSD. The predictions obtained are validated against previously published experimental data, thereby demonstrating the advantages of this approach for large-scale systems as well as suggesting future extensions to long piping systems and more complex geometries.  相似文献   
993.
《Applied Mathematical Modelling》2014,38(19-20):4835-4848
The discrete-time predator–prey biological economic system obtained by Euler method is investigated. Some conditions for the system to undergo flip bifurcation and Neimark–Sacker bifurcation are derived by using new normal form of differential-algebraic system, center mainfold theorem and bifurcation theory. Numerical simulations are given to show the effectiveness of our results and also to exhibit period-doubling bifurcation in orbits of period 2, 4, 8 and chaotic sets. The results obtained here reveal far richer dynamics in discrete differential-algebraic biological economic system. The contents are interesting in mathematics and biology.  相似文献   
994.
995.
We consider a dynamically-consistent analytical model of a 3D topographic vortex. The model is governed by equations derived from the classical problem of the axisymmetric Taylor–Couette flow. Using linear expansions, these equations can be reduced to a differential sixth-order equation with variable coefficients. For this differential equation, we formulate a boundary value problem, which has a number of issues for numerical solving. To avoid these issues and find the eigenvalues and eigenfunctions of the boundary value problem, we suggest a modification of the invariant imbedding method (the Riccati equation method). In this paper, we show that such a modification is necessary since the boundary conditions possess singular matrices, which sufficiently complicate the derivation of the Riccati equation. We suggest algebraic manipulations, which permit the initial problem to be reduced to a problem with regular boundary conditions. Also, we propose a method for obtaining a numerical solution of the matrix Riccati equation by means of recurrence relations, which allow us to obtain a matrizer converging to the required eigenfunction. The suggested method is tested by calculating the corresponding eigenvalues and eigenfunctions, and then, by constructing fluid particle trajectories on the basis of the eigenfunctions.  相似文献   
996.
By means of symbolic computation and Darboux transformation, analytically and numerically investigated in this paper is a two-coupled Sasa–Satsuma system, which can describe the pulse propagation in birefringent fibers, so as to increase the bit rate in optical fibers, or achieve wavelength-division multiplexing. Analytical bright N-soliton solution of the system is firstly derived. Based on the bright one- and two-soliton solutions, numerical simulation and figure illustration are carried out on through the multi-parametric management, i.e., different choices among eight parameters in the two-soliton solutions. The interaction mechanisms for the bright two-solitons are revealed in three aspects: Separating evolution behaviors, elastic collision behaviors and inelastic collision behaviors. There exist three different cases for the inelastic collision for the two-soliton, which reflect correspondingly different energy transfer mechanisms (by intensity redistribution) between the two components: Manakov-typed collision; a near-elastic collision and another completely inelastic collision between the two components; and four single-solitons in two components undergo shape changes (inelastic and elastic) due to intensity redistribution, where one single-soliton keeps invariant and the other three single-solitons change during the collision. The collision mechanisms may be viewed as the two-solitons interact in a waveguide supporting propagation of two nonlinear waves simultaneously. In general, partial suppression (enhancement) of intensity between the components is dependent on the values of the soliton parameters.  相似文献   
997.
The traditional Newton method for solving nonlinear operator equations in Banach spaces is discussed within the context of the continuous Newton method. This setting makes it possible to interpret the Newton method as a discrete dynamical system and thereby to cast it in the framework of an adaptive step size control procedure. In so doing, our goal is to reduce the chaotic behavior of the original method without losing its quadratic convergence property close to the roots. The performance of the modified scheme is illustrated with various examples from algebraic and differential equations.  相似文献   
998.
For some abstract classes of nonlinear non-autonomous systems with variable and state-dependent delays existence, non-existence and multiplicity of periodic solutions are discussed. To illustrate the efficiency of the method, we obtain some well-known results for applied systems as corollaries of our existence theorems.  相似文献   
999.
1000.
We present a coupled lattice Boltzmann method (LBM) to solve a set of model equations for electrokinetic flows in micro-/nano-channels. The model consists of the Poisson equation for the electrical potential, the Nernst–Planck equation for the ion concentration, and the Navier–Stokes equation for the flows of the electrolyte solution. In the proposed LBM, the electrochemical migration and the convection of the electrolyte solution contributing to the ion flux are incorporated into the collision operator, which maintains the locality of the algorithm inherent to the original LBM. Furthermore, the Neumann-type boundary condition at the solid/liquid interface is then correctly imposed. In order to validate the present LBM, we consider an electro-osmotic flow in a slit between two charged infinite parallel plates, and the results of LBM computation are compared to the analytical solutions. Good agreement is obtained in the parameter range considered herein, including the case in which the nonlinearity of the Poisson equation due to the large potential variation manifests itself. We also apply the method to a two-dimensional problem of a finite-length microchannel with an entry and an exit. The steady state, as well as the transient behavior, of the electro-osmotic flow induced in the microchannel is investigated. It is shown that, although no external pressure difference is imposed, the presence of the entry and exit results in the occurrence of the local pressure gradient that causes a flow resistance reducing the magnitude of the electro-osmotic flow.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号