首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   282篇
  免费   35篇
  国内免费   5篇
化学   97篇
晶体学   2篇
力学   62篇
综合类   13篇
数学   52篇
物理学   96篇
  2023年   2篇
  2022年   9篇
  2021年   12篇
  2020年   12篇
  2019年   10篇
  2018年   7篇
  2017年   21篇
  2016年   17篇
  2015年   15篇
  2014年   16篇
  2013年   34篇
  2012年   15篇
  2011年   10篇
  2010年   14篇
  2009年   10篇
  2008年   13篇
  2007年   20篇
  2006年   14篇
  2005年   9篇
  2004年   8篇
  2003年   8篇
  2002年   5篇
  2001年   9篇
  2000年   4篇
  1999年   4篇
  1998年   4篇
  1997年   3篇
  1996年   4篇
  1995年   4篇
  1993年   2篇
  1991年   1篇
  1988年   2篇
  1987年   1篇
  1979年   1篇
  1978年   1篇
  1957年   1篇
排序方式: 共有322条查询结果,搜索用时 921 毫秒
301.
A creep model of a composite with a creeping matrix and initially continuous elastic brittle fibers is developed. The model accounts for the fiber fragmentation in the stage of unsteady creep of the composite, which ends with a steady-state creep, where a minimum possible average length of the fiber is achieved. The model makes it possible to analyze the creep rate of the composite in relation to such parameters of its structure as the statistic characteristics of the fiber strength, the creep characteristics of the matrix, and the strength of the fiber-matrix interface, the latter being of fundamental importance. A comparison between the calculation results and the experimental ones obtained on composites with a Ni-matrix and monocrystalline and eutectic oxide fibers as well as on sapphire fiber/TiAl-matrix composites shows that the model is applicable to the computer simulation of the creep behavior of heat-resistant composites and to the optimization of the structure of such composites. By combining the experimental data with calculation results, it is possible to evaluate the heat resistance of composites and the potential of oxide-fiber/Ni-matrix composites. The composite specimens obtained and tested to date reveal their high creep resistance up to a temperature of 1150°C. The maximum operating temperature of the composites can be considerably raised by strengthening the fiber-matrix interface.  相似文献   
302.
叶红艳 《化学教育》2019,40(11):70-72
对蜡烛燃烧实验进行了改进。将蜡烛放置在液封集气瓶中燃烧,可以简单方便地同时验证多种燃烧产物,白烟复燃的成功率大大提高。此外,还验证了在加热条件下,炭可使酸性高锰酸钾溶液褪色。  相似文献   
303.
提出了一种关于材料力学特性的综合研究方法,包括获取材料在宽大的应变率及温度范围下的必要的力学特性,确定或辨别材料的变形及破坏模型的必要参数,并通过特别的实验及数字模拟实验来检验或验证模型的适当性.通过对一些结构金属及合金材料的研究,展现了该方法的应用潜力.  相似文献   
304.
验证了离子选择电极法测定氟化物的特性指标.结果表明:检出限为0.01mg/L,测定下限为0.04mg/L,样本标准偏差为0.30—0.40,相对标准偏差为0.16%-0.30%,回收率在97~103%内.说明该方法的精密度好,准确度高,符合质量控制要求.  相似文献   
305.
基于模型检测的软件安全性验证方法   总被引:4,自引:0,他引:4  
安全性是安全苛求系统第一性能,为了确保系统安全,这类系统在投入使用之前必须进行安全性验证.本文提出一种基于FTA(fault tree analysis)与LTS(labeled transition systems)模型检测的安全性验证方法验证安全苛求软件系统的安全性,并应用到铁路车站联锁系统的安全性验证中,该方法具有较好的通用性,自动化程度较高,可从效率和安全性方面改善安全苛求软件的设计和开发,丰富了软件的形式化开发方法,也为软件的修改和维护提供了方便.  相似文献   
306.
泥石流固液分相流速计算方法研究   总被引:8,自引:0,他引:8  
泥石流固液分相流速是泥石流对岸坡、防治结构冲击、磨损机理的核心问题.将泥石流体简化为具有相同粒径的固相和具有相同力学性质的液相,基于泥石流体为沿流动方向的一维两相流体,运用两相流理论建立了泥石流固液分相流速控制方程.构建了泥石流平均压力、彻体力及平均表面力的计算方法,尤其通过浆体的Binhanm体流变方程、Bagnold颗粒相互作用试验成果建立了控制体平均表面力计算方法;建立了固液两相流速比例系数,以及理论固相流速与实际流速的比例系数.据此求解控制方程得到了固液分相流速计算方法,该方法既可同时适用于粘性泥石流和稀性泥石流,也可在泥石流爆发以后通过现场采集沉积物分析反求泥石流爆发期间的分相流速.工程实例分析显示,该方法计算结果与实测结果吻合较好.  相似文献   
307.
This study describes a semi-analytic solution of planar radiative shock waves with a grey nonequilibrium diffusion radiation model. The solution may be used to verify radiation-hydrodynamics codes. Comparisons are made with the equilibrium diffusion solutions of Lowrie and Rauenzahn (Shock Waves 16(6):445–453, 2007). The solution also gives additional insight into the structure of radiative shocks. Previous work has assumed that the material temperature reaches its maximum at the post-shock state of the embedded hydrodynamic shock (Zel’dovich spike). We show that in many cases, the temperature may continue to increase after the hydrodynamic shock and reaches its maximum at the isothermal sonic point. Also, a temperature spike may exist even in the absence of an embedded hydrodynamic shock. We also derive an improved estimate for the maximum temperature.   相似文献   
308.
The method of manufactured solutions (MMS) is a solution verification methodology for determining whether the implementation of a discretization method is achieving its theoretical order of accuracy. This methodology combines the advantages of grid refinement studies and comparison with exact solution, by modifying the governing equations solved within a code by adding a source term to drive the solution towards a predetermined analytic function. By solving the modified equations on a sequence of grids and comparing the differences between the converged solution and manufactured solution, the order of accuracy of the implementation can be investigated. However, in its current form, converged solutions on a sequence of grids are required which can be quite costly and difficult to obtain. In this paper, by comparing the MMS to the method for determining the theoretical order of accuracy of a discretization method, the residual formulation of the MMS is developed. This new formulation only requires that the residual of the discretized governing equations to be calculated and not the solution to the discretized equations, thus avoiding the computational cost and difficulties inherent in obtaining converged solutions. Furthermore, since only the residuals are interrogated, individual components of the flow solver can be tested, in isolation, allowing the MMS to be used more effectively in locating errors within the code. This new approach is demonstrated to yield the same order of accuracy as the original MMS using three different cases—one-dimensional porous media equation, one-dimensional St Venant equations and two-dimensional unstructured Navier–Stokes simulations.  相似文献   
309.
沿袭裂纹尖端附近的形状改变能密度因子概念思路,定义V形切口尖端附近的形状改变能密度因子.基于V形切口尖端附近的奇异应力场,建立了Ⅰ-Ⅱ复合V形切口脆性断裂的形状改变能密度因子准则.应用该准则对复合载荷下双边切口试件进行了理论预测,并把预测结果与实验结果、应变能密度因子准则的预测结果进行了比较.结果表明,形状改变能密度因子准则预测的起裂角和断裂曲线与实验值更吻合.  相似文献   
310.
A possible mathematical ice model for the wave interactions in polar seas was developed based on the assumption that an ice cover behaved as a Voigt viscoelastic material. The dispersion relation was found to depend on the rheological properties of the cover. In the present study, an experimental approach was developed that can enable the verification of the theoretical predictions in the laboratory. The approach utilized the blended mixture of white oil and Polydimethylsiloxane (PDMS) material with various mass percentages of a curing agent, to create a floating layer with a range of targeted viscoelastic properties. Due to the large coverage required for wave flume experiments, special curing procedures were also established for the preparation of PDMS material. The rheological results showed that the mechanical behavior of the floating cover was close to a Voigt material. Experiments were conducted to analyze the wave interactions with the floating viscoelastic cover. The measured data showed an obvious change of wavelength when waves propagated along the cover region. It is observed that the change in wavelength can be linked quantitatively to the viscoelastic properties based on the numerical predictions by Wang and Shen (2010). Some differences were however noted for less viscous covers under longer wave periods. A direct comparison of the PDMS covers with a polypropylene (PP) cover was also performed for verification. Only wave lengthening was observed under the PP cover. With a shear modulus more than three orders of magnitude greater than that of PDMS, the theoretical wavelength for the PP cover from Wang and Shen (2010) is very close to that of the thin elastic plate theory from Fox and Squire (1990). Comparison between these two theoretical results and the measured data again deviated with longer wave periods. In both PDMS and PP cases, edge effects and pitching motion of the covers were present at various degrees. In addition, the materials were not strictly a Voigt type. The small deviation from the idealized rheological behavior could also contribute to differences between theoretical and experimental results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号