首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   751篇
  免费   164篇
  国内免费   148篇
化学   300篇
晶体学   23篇
力学   275篇
综合类   7篇
数学   19篇
物理学   439篇
  2024年   3篇
  2023年   17篇
  2022年   35篇
  2021年   54篇
  2020年   35篇
  2019年   36篇
  2018年   39篇
  2017年   28篇
  2016年   43篇
  2015年   35篇
  2014年   45篇
  2013年   113篇
  2012年   49篇
  2011年   51篇
  2010年   48篇
  2009年   43篇
  2008年   44篇
  2007年   43篇
  2006年   34篇
  2005年   33篇
  2004年   35篇
  2003年   29篇
  2002年   20篇
  2001年   14篇
  2000年   19篇
  1999年   7篇
  1998年   13篇
  1997年   15篇
  1996年   15篇
  1995年   10篇
  1994年   6篇
  1993年   6篇
  1992年   5篇
  1991年   5篇
  1990年   5篇
  1989年   1篇
  1988年   9篇
  1987年   4篇
  1985年   4篇
  1984年   1篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1979年   5篇
  1978年   1篇
排序方式: 共有1063条查询结果,搜索用时 15 毫秒
91.
A single-surface yield function for geomaterials   总被引:6,自引:0,他引:6  
Summary The article outlines a seven-parametric yield function for geomaterials such as soils and rocks. Proceeding from a geometric representation in the principal stress space, the yield surface exhibits a closed shape, thus reflecting the sensitivity of the plastic response of this type of media to hydrostatic stresses. The yield function is able to describe the effects of primary yielding, as well as of isotropic and kinematic hardening. In addition the failure envelope contains an open cone when the number of material parameters is reduced from seven to five.Dedicated to F. G. Kollmann on the occasion of his 60th birthday  相似文献   
92.
应用高纯铝单晶体,采用偏离弹性线法定义其在潜在滑移系统在屈服应力,研究了潜在滑移系在正负两个滑移方向上的屈服及应变硬化行为。结果表明,潜在滑移系负行为的差异要远远小于动滑移系的Bauschinger效应,其正负方向的屈服应力一般均等于或略小于预应变时的最大分切应力,大大高于动滑移系的负向屈服应力,潜在滑移系和原始滑移系的相对取向及预应变的大小对单晶体潜在移系在潜在硬化的影响不大,但对其起始过渡区应  相似文献   
93.
A generalization of the static shakedown theorems for elastic plastic hardening solids with isotropic [Mech. Res. Commun. 29 (2002) 159] and anisotropic [Acta Mechanica, 2004] damage accounting for the possibility of material softening is proposed.  相似文献   
94.
95.
Analytical solutions for the stress distribution in rotating parabolic solid disks are obtained. The analysis is based on Tresca's yield criterion, its associated flow rule and linear strain hardening. It is shown that, the deformation behavior of the convex parabolic disk is similar to that of the uniform thickness disk, but in the case of concave parabolic solid disk, it is different. In the latter, the plastic core consists of three different plastic regions with different mathematical forms of the yield criteria. Accordingly, three different stages of elastic–plastic deformation occur. All these stages of elastic–plastic deformation are studied in detail. It is also shown mathematically that in the limiting case the parabolic disk solution reduces to the solution of rotating uniform thickness solid disk.  相似文献   
96.
Summary A general approach to the problem of determination of elastoplastic behavior of metallic polycrystals at finite deformation is presented. The relation between moving dislocation density and global slip rate for grains is developed. Transition to grain response is obtained by introducing the hardening matrix. Field equations for heterogeneous elastoplastic metals are transformed into an integral equation, using Green functions technique. This allows to find the spin of the lattice related to texture formation.Scale transition is achieved by a self-consistent approximation of the integral equation. New results concerning BCC metals (sheet steel) are presented. They apply to tensile test, Lankford coefficient, initial and subsequent yield surfaces, and evolution of the internal state of the polycrystal: second-order residual stress, stored energy and texture evolution.  相似文献   
97.
Glutens were isolated from flour of three European wheat cultivars which perform differently in cereal products. The rheological and fracture properties of gluten-water doughs were determined in uniaxial and biaxial extension at large deformations and small angle sinusoidal oscillation tests and compared with the mechanical properties of the parental flour doughs. At 25 °C the linear region was in the same range as that of flour dough, while at a higher temperature (45 °C) the linear region was more than an order of magnitude higher. At 45 °C the storage modulus and tan were lower than at 25 °C. Variation in moduli between cultivars was much more pronounced for gluten than for flour doughs.Similarly to flour dough in both uniaxial and biaxial extension the stress () increased more than proportionally with the strain, a phenomenon called strain hardening. The stress at a set strain and strain hardening depended much more strongly on the type of deformation for gluten than for flour dough: was higher in biaxial extension for gluten than for flour dough, but was much higher in uniaxial extension. This indicates that orientational effects in elongational flow are of even larger importance for the mechanical properties of gluten than of flour dough. It is likely that it is the glutenin fraction that, because of its large size, confers these direction dependent properties to gluten and flour doughs. Fracture stresses were much higher for gluten than for flour dough, while fracture strains were in the same range or higher. For gluten dough fracture strains increased less strongly with increasing strain rate than for flour dough. Glutens exhibiting a higher stress at a certain strain had a smaller fracture strain.Our findings confirm the conviction that the large deformation properties of flour dough are mainly governed by the gluten fraction. However, there are also differences. Compared to flour dough gluten dough exhibits (i) a stronger strain hardening, (ii) a larger difference in between uniaxial and biaxial extension and (iii) a smaller strain rate dependency of the fracture strain.  相似文献   
98.
First-principles calculations based on density functional theory (DFT) and the generalized gradient approximation (GGA) have been used to study the adsorption of CO molecule on the perfect and defective FeS 2 (100) surfaces. The defective Fe 2 S(100) surfaces are caused by sulfur deficiencies. Slab geometry and periodic boundary conditions are employed with partial relaxations of atom positions in calculations. Two molecular orientations, Cand O-down, at various distinct sites have been considered. Total energy calculations indicated that no matter on perfect or deficient surfaces, the Fe position is relatively more favored than the S site with the predicted binding energies of 120.8 kJ/mol and 140.8 kJ/mol, respectively. Moreover, CO was found to be bound to Fe atom in vertical configuration. The analysis of density of states and vibrational frequencies before and after adsorption showed clear changes of the C–O bond.  相似文献   
99.
The noncovalent interactions between encapsulated water chains and single‐walled carbon nanotube (SWCNT) are studied using a self‐consistent charge density functional tight binding method with dispersion correction. The most interesting and important feature we observe is the diameter shrinking of CNTs when water chains are confined inside SWCNT. The diameter shrinking of CNTs can be suggested to the original of the van der Waals and H‐π interaction between water chains and CNTs. The calculated Raman spectra show the interactions between SWCNTs and water chains probably give rise to a kind of “mode hardening effect,” which agrees with the diameter shrinking of CNTs when water chains are confined inside SWCNT. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011.  相似文献   
100.
A series of systematic tensile and microbend tests were conducted on copper foil specimens with different thicknesses. The specimens were made of a copper foil having almost unidirectional crystal orientations that was considered to be nearly single-crystal. In order to investigate the effects of slip system interactions, two different crystal orientations relative to the tensile direction were considered in the tests: one is close to coplanar double-slip orientation, and the other is close to the ideal cube orientation (the tensile direction nearly coincides to [0 0 1]) that yields multi-planar multi-slip deformation. We extended the microbend test method to include the reversal of bending, and we attempted to divide the total amount of strain-hardening into isotropic and kinematic hardening components. In the tensile tests, no systematic tendency of size dependence was observed. In the microbend tests, size-dependent kinematic hardening behavior was observed for both the crystal orientations, while size dependence of isotropic hardening was observed only for the multi-planar multi-slip case. We introduce an extended crystal plasticity model that accounts for the effects of the geometrically necessary dislocations (GNDs), which correspond to the spatial gradients of crystallographic slips. Through numerical simulations performed using the model, the origin of the size-dependent behavior observed in the microbend tests is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号