首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9348篇
  免费   1659篇
  国内免费   843篇
化学   9419篇
晶体学   71篇
力学   87篇
综合类   25篇
数学   9篇
物理学   2239篇
  2024年   16篇
  2023年   152篇
  2022年   355篇
  2021年   500篇
  2020年   671篇
  2019年   531篇
  2018年   468篇
  2017年   539篇
  2016年   741篇
  2015年   720篇
  2014年   801篇
  2013年   926篇
  2012年   831篇
  2011年   818篇
  2010年   632篇
  2009年   623篇
  2008年   538篇
  2007年   488篇
  2006年   377篇
  2005年   297篇
  2004年   194篇
  2003年   177篇
  2002年   132篇
  2001年   114篇
  2000年   75篇
  1999年   57篇
  1998年   28篇
  1997年   15篇
  1996年   8篇
  1995年   8篇
  1994年   2篇
  1992年   1篇
  1991年   2篇
  1990年   7篇
  1985年   2篇
  1983年   3篇
  1979年   1篇
排序方式: 共有10000条查询结果,搜索用时 390 毫秒
991.
Cellulose microparticles from ginkgo seed shells were treated by ultrasonic treatments within the selected output powders (150–600 W) and durations (10–60 min) to produce cellulose nanoparticles. The main aim of this study was to investigate effects of ultrasonic conditions on the interfacial property and emulsifying property of those cellulose nanoparticles. Compared to ultrasonic output powers, ultrasonic durations showed the greater influence on morphology and physical properties of cellulose nanoparticles. Atomic force microscopy revealed that noodle-like cellulose particles with 1100 nm in length gradually became the short rod-like nanoparticles with 300 nm in length with increasing of ultrasonic duration from 10 min to 60 min. Moreover, results of contact angles indicated that ultrasound could significantly improve hydrophobicity of cellulose nanoparticles. The interfacial shear rheology showed that although all cellulose nanoparticles exhibited the similar interface adsorption behavior which showed the initial lag-phase of adsorption, followed by the interface saturation, the time of this initial lag-phase was affected by ultrasonic conditions. The increase of ultrasonic duration and ultrasonic power could shorten the time of this initial lag-phase, suggesting the resulting cellulose nanoparticles easier adsorption at the O/W interface. It was probably attributed to its small size and high hydrophobicity induced by intense ultrasonic treatments. Meanwhile, the cellulose nanoparticles with small size and higher hydrophobicity exhibited the better emulsifying ability to stabilize oil-in-water emulsions due to the formation of the viscoelastic interfacial film. This study improved understanding about changes in interfacial and emulsifying properties of cellulose nanoparticles caused by ultrasonic treatments.  相似文献   
992.
Current sonochemical methods rely on spatially uncontrolled cavitation for radical species generation to promote chemical reactions. To improve radical generation, sonosensitizers have been demonstrated to be activated by cavitation-based light emission (sonoluminescence). Unfortunately, this process remains relatively inefficient compared to direct photocatalysis, due to the physical separation between cavitation event and sonosensitizing agent. In this study, we have synthesized nanostructured titanium dioxide particles to couple the source for cavitation within a photocatalytic site to create a sonophotocatalyst. In doing so, we demonstrate that site-controlled cavitation from the nanoparticles using pulsed ultrasound at reduced acoustic powers resulted in the sonochemical degradation methylene blue at rates nearly three orders of magnitude faster than other titanium dioxide-based nanoparticles by conventional methods. Sonochemical degradation was directly proportional to the measured cavitation produced by these sonophotocatalysts. Our work suggests that simple nanostructuring of current sonosensitizers to enable on-site cavitation greatly enhances sonochemical reaction rates.  相似文献   
993.
Gold catalysts have attracted attention for enabling sustainable chemical processes under ambient conditions. This reactivity is attributed to the small size of the catalysts (<5 nm); however, their size also creates difficulty when removing from product streams and often require rare-metal additives to enhance reaction rate kinetics, thereby limiting the environmental benefits of these catalysts. Comparatively, submicron gold catalysts are easier to separate but are much less reactive under ambient conditions. In this study, we synthesized submicron gas-stabilising gold nanocones (gs-AuNCs) that are acoustically responsive to afford greater reaction rates than other conventional gold catalysts. We explore the catalytic performance of acoustically responsive gs-AuNCs exposed to focussed ultrasound at 5.0 MPa peak negative pressure and 1.1 MHz center frequency. Cavitation nucleated from gs-AuNCs significantly increased the sonocatalytic degradation of water pollutants without the need for co-catalysts. The ability to amplify catalysis with ultrasound by tailoring the morphology of the catalyst to control cavitation opens new paths for future designs of sonocatalysts that may enable a sustainable chemical approach needed for a broad range of industrial processes.  相似文献   
994.
995.
In the malignant plasma cell disease multiple myeloma (MM), bone lesions and resulting fractures caused by MM cell (MMC) accumulation represent a major cause of morbidity and mortality. Despite recent advantages in systemic treatment, residual MMCs remain, especially in bone lesions. Therefore an interfacial delivery system for local treatment of MM and induced bone disease based on polyelectrolyte complex nanoparticles (PEC NP) loaded with bone morphogenetic protein 6 (BMP-6) inducing de-novo bone formation and MMC apoptosis is presented herein. BMP-6 loaded PEC NP are fabricated by defined mixing bio-related cationic and anionic polysaccharides and BMP-6 according to molar ratio of BMP-6/PEC-NP of 1/3. BMP-6/PEC NP bound to a model substrate releases 10% BMP-6 sustainably within two weeks as accessed by infrared spectroscopy. BMP-6 loaded PEC NP adheres to cell membranes of MMCs and MSCs and activated phosphorylation of Smad 1/5. Osteogenic differentiation (ALP-concentration) is enhanced in MSCs (p < 0.05). All patient samples (10/10) of MMCs show significant induction of apoptosis (median 84%, p < 0.05). Finally, BMP-6/PEC NP are successfully integrated in a commercial hyaluronic acid based hydrogel material revealing MMC death as principal proof for the local treatment of MM induced bone lesions.  相似文献   
996.
A new catalyst for cross‐coupling synthesis of 1,4‐diphenylbutadiyne‐1,3 was prepared by thermolysis of copper(II) poly‐5‐vinyltetrazolate. It presents heterogeneous catalyst, in which copper nanoparticles are supported on polymeric matrix surface. The catalyst is recovered, recycled, and shows high catalytic activity in cross‐coupling synthesis of 1,4‐diphenylbutadiyne‐1,3. The reaction proceeds in aerobic conditions at room temperature in the presence of pyridine.  相似文献   
997.
《中国化学会会志》2017,64(6):607-611
Copper nanoparticles (Cu NPs ) coated with polystyrene (PS ) (Cu NPs @PS ) were prepared by precipitation polymerization. First, Cu NPs were prepared by chemical reduction using cupric acetate as precursor, sodium polyacrylate (PAANa ) as stabilizer, and hydrazine hydrate as reducing agent. Then Cu NPs were coated by precipitation polymerization using styrene as monomer, 3‐(trimethoxysilyl) propyl acrylate as co‐monomer, and 2, 2‐azobisisobutyronitrile (AIBN ) as initiator. Ultraviolet–visible (UV –vis) spectroscopy and transmission electron microscopy (TEM ) results showed that stable composite particles could be synthesized by precipitation polymerization. The amount of PAANa had a significant effect on the size of Cu NPs . The addition of more PAANa resulted in smaller Cu NPs . The spherical Cu NPs became nanowires when increasing the stirring rate from 350 to 700 rpm during precipitation polymerization. Ag NPs @PS with core–shell structure were also prepared by this method, which appears to be universal.  相似文献   
998.
A green method using Juglans regia bark extract was used to synthesize silver nanoparticles at room temperature with monitoring by absorption spectroscopy. The size and shape of the synthesized nanoparticles were characterized by infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, high-resolution transmission electron microscopy, and small-angle X-ray scattering. The average particle size was from 10 to 30?nm. Gas chromatography–mass spectrometry (GC–MS) was used for the separation, identification, and quantification of components of the plant extracts. A possible mechanism for the synthesis of nanoparticles was elucidated based on the GC–MS results. The synthesized silver nanoparticles showed effective inhibition against Streptococcus mutans, which is the main causative agent for dental caries. The nanoparticles also showed promising antibiofilm activity by inhibiting the glucosyltransferase enzyme.  相似文献   
999.
《中国化学会会志》2017,64(11):1308-1315
In this study, the galvanic displacement reaction between silver and AuCl4 was carried out to synthesize a series of silver nanowire (Ag NW) @ gold nanoparticle (Au NP) hybrid nanowires. The influence of Ag NW @ Au NP hybrid nanowires on the fluorescence properties of the poly (3‐hexylthiophene) (P3HT) was investigated. The particle sizes of Au NPs on the hybrid nanowires could be adjusted by varying the reaction time and the concentration of the HAuCl4 solution. Furthermore, steady‐state fluorescence measurements showed that the fluorescence intensity of the P3HT films was higher on various Ag NW @ Au NP hybrid nanowires compared to that on a bare silicon substrate. This was due to the increase in the intensity of electromagnetic field by the localized surface plasmon resonances of Au NPs and surface plasmon polaritons of Ag NWs from the hybrid nanowires. The results were further confirmed by the Raman spectra of the P3HT films on different substrates.  相似文献   
1000.
A sensitive and rapid magnetic nanoparticle-based fluorescent immunoassay for the determination of aflatoxin M1 in raw milk was developed. Aflatoxin M1 was converted to aflatoxin M1-o-carboxymethyl oxime. The aflatoxin M1-oxime was used for the preparation of aflatoxin M1-oxime-fluoresceinamine conjugate through the carbodiimide reaction. The aflatoxin M1-oxime-fluoresceinamine conjugate was characterized by ultraviolet–visible and infrared spectroscopy. Magnetic nanoparticles (Fe3O4) were synthesized and modified by 3-(aminopropyl)triethoxysilane. The size of initial (139?nm) and functionalized magnetic nanoparticles (147?nm) was determined by particle analysis. The optimal mass of immobilized antibody (25?µg) and optimal concentration of aflatoxin M1-oxime-fluoresceinamine conjugate (15?µg?mL?1) for magnetic nanoparticle-based fluorescent immunoassay were determined. The developed immunoassay provided a linear aflatoxin M1 concentration range from 3.0 to 100?pg?mL?1 in bovine milk. The detection limit was 2.9?pg?mL?1. The results of aflatoxin M1 magnetic nanoparticle-based fluorescent immunoassay in heat-treated milk and phosphate-buffered saline at pH 6.6 were compared. The influence of the somatic cell count, pH, and fat concentration in bovine milk on the aflatoxin M1 immunoassay was investigated. The influence of the milk species on the immunoassay was also characterized. The high fat concentration ovine milk depressed the sensitivity of the aflatoxin M1 immunoassay.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号