首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1447篇
  免费   128篇
  国内免费   91篇
化学   1561篇
晶体学   6篇
力学   20篇
综合类   3篇
物理学   76篇
  2023年   5篇
  2022年   8篇
  2021年   27篇
  2020年   26篇
  2019年   29篇
  2018年   35篇
  2017年   51篇
  2016年   60篇
  2015年   61篇
  2014年   68篇
  2013年   140篇
  2012年   82篇
  2011年   77篇
  2010年   93篇
  2009年   106篇
  2008年   120篇
  2007年   95篇
  2006年   71篇
  2005年   56篇
  2004年   78篇
  2003年   43篇
  2002年   33篇
  2001年   23篇
  2000年   35篇
  1999年   32篇
  1998年   27篇
  1997年   37篇
  1996年   18篇
  1995年   19篇
  1994年   23篇
  1993年   14篇
  1992年   9篇
  1991年   9篇
  1990年   5篇
  1989年   3篇
  1988年   7篇
  1987年   13篇
  1986年   7篇
  1985年   6篇
  1984年   5篇
  1983年   1篇
  1982年   5篇
  1981年   1篇
  1979年   1篇
  1972年   2篇
排序方式: 共有1666条查询结果,搜索用时 312 毫秒
151.
Kinetics of D-mannose oxidation by cerium (IV) was studied in a sulfuric acid medium at 40℃ both in absence and presence of ionic micelles. In both cases, the rate of the reaction was first-order in D-mannose and in cerium(Ⅳ), which decreased with increasing [H2SO4]. This suggested that the redox reaction followed the same mechanism. The reaction proceeded through formation of an intermediate complex, which was proved by kinetic method. The complex underwent slow unimolecular decomposition to a free radical that reacted with cerium (Ⅳ) to afford the product. The catalytic role of cationic cetyltrimethylammonium bromide (CTAB) micelles was best explained by the Menger-Portnoy model. The study of the effect of CTAB also indicated that a negatively charged species was reactive form of cerium (Ⅳ). From the kinetic data, micelle-cerium (Ⅳ) binding and rate constants in micellar medium were evaluated.The anionic micelle of sodium dodecyl sulfate plays no catalytic role. The oxidation has the rate expression: --d[Ce(Ⅳ)]= k1Kcl[D-mannose] [Ce(Ⅳ)]dt Different activation parameters for micelle catalyzed and uncatalyzed paths were also calculated and discussed.  相似文献   
152.
A straightforward strategy is proposed for the synthesis of novel, amphiphilic block–graft MPEG‐b‐(PαN3CL‐g‐alkyne) degradable copolymers. First, the ring‐opening polymerization of α‐chloro‐ε‐caprolactone (αClCL) was initiated by hydroxy‐terminated macroinitiator monomethoxy poly(ethylene glycol) (MPEG) with SnOct2 as the catalyst. In a second step, pendent chlorides were converted into azides by the reaction with sodium azide. Finally, various kinds of terminal alkynes were reacted with pendent azides by copper‐catalyzed Huisgen's 1,3‐dipolar cycloaddition, and thus a “click” reaction. These copolymers were characterized by differential scanning calorimetry (DSC), 1H NMR, IR, and gel permeation chromatography. By fixing the length of the MPEG block and increasing the length of PαClCL (or PαN3CL) block, an increase tendency in Tgs was observed. However, the copolymers of MPEG‐b‐PαClCL and MPEG‐b‐PαN3CL were semicrystalline when the Mn of MPEG was above 2000 g mol?1. The block–graft copolymers formed micelles in the aqueous phase with critical micelle concentrations (CMCs) in the range of 1.4–12.0 mg L?1 depending on the composition of polymers. The lengths of hydrophilic segment influence the shape of the micelle. The mean hydrodynamic diameters of the micelles from dynamic light scattering were in the range of 90–160 nm. In vitro hydrolytic degradation of block–graft copolymers is faster than the corresponding block copolymers. The drug entrapment efficiency and the drug loading content of micelles depending on the composition of block–graft polymers were described. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4320–4331, 2008  相似文献   
153.
The catalytic effect of the sodium dodecyl sulfate-hexanol-water ternary reverse micellar system in the alkaline hydrolysis ofO-alkylO′-aryl chloromethylphosphonates as a function of the substrate structure was studied. The micellar effect is mainly determined by a change in the electronic properties of the substituents, while the hydrophobicity plays a secondary role. The kinetic data were examined in the framework of the pseudo-phase model of micellar catalysis. The rate constants of the reaction in the surface layer and the partition constants of the reactants were calculated. Published inIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1366–1370., August, 2000.  相似文献   
154.
155.
156.
An example case of selective morphology by simply varying pH and heating profile based on a diblock copolymer, i.e., poly(N‐isopropylacrylamide) (PNIPAAM) and poly[2(dimethylamino)ethyl acrylate] (PDMAEA) is reported. A variation of pH induces an aggregation of the block copolymers in either micelles or vesicles. In a subsequent step, temperature variation triggers the formation of vesicular structures. This demonstrates not only the temperature but also the heating rate that tunes the nanostructures from micelles to vesicles. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   
157.
Novel amphiphilic eight‐arm star triblock copolymers, star poly(ε‐caprolactone)‐block‐poly(acrylic acid)‐block‐poly(ε‐caprolactone)s (SPCL‐PAA‐PCL) with resorcinarene as core moiety were prepared by combination of ROP, ATRP, and “click” reaction strategy. First, the hydroxyl end groups of the predefined eight‐arm SPCLs synthesized by ROP were converted to 2‐bromoesters which permitted ATRP of tert‐butyl acrylate (tBA) to form star diblock copolymers: SPCL‐PtBA. Next, the bromide end groups of SPCL‐PtBA were quantitatively converted to terminal azides by NaN3, which were combined with presynthesized alkyne‐terminated poly(ε‐caprolactone) (A‐PCL) in the presence of Cu(I)/N,N,N,N,N″‐pentamethyldiethylenetriamine in DMF to give the star triblock copolymers: SPCL‐PtBA‐PCL. 1H NMR, FTIR, and SEC analyses confirmed the expected star triblock architecture. The hydrolysis of tert‐butyl ester groups of the poly(tert‐butyl acrylate) blocks gave the amphiphilic star triblock copolymers: SPCL‐PAA‐PCL. These amphiphilic star triblock copolymers could self‐assemble into spherical micelles in aqueous solution with the particle size ranging from 20 to 60 nm. Their micellization behaviors were characterized by dynamic light scattering and transmission electron microscopy. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2905–2916, 2009  相似文献   
158.
Block copolymers of poly(glycidol)‐b‐poly(4‐vinylpyridine) were obtained by ATRP of 4‐vinylpyridine initiated by ω‐(2‐chloropropionyl) poly(glycidol) macroinitiators. By changing the monomer/macroinitiator ratio in the synthesis polymers with varied P4VP/PGl molar ratio were obtained. The obtained block copolymers showed pH sensitive solubility. It was found that the linkage of a hydrophilic poly(glycidol) block to a P4VP influenced the pKa value of P4VP. DLS measurements showed the formation of fully collapsed aggregates exceeding pH 4.7. Above this pH values the collapsed P4VP core of the aggregates was stabilized by a surrounding hydrophilic poly(glycidol) corona. The size of the aggregates depended significantly upon the composition of the block copolymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1782–1794, 2009  相似文献   
159.
Statistical copolymers of di(ethylene glycol) methyl ether methacrylate (MEO2MA) and tri(ethylene glycol) methyl ether methacrylate (MEO3MA) were synthesized by atom transfer radical polymerization (ATRP) providing copolymers with controlled composition and molecular weights ranging from Mn = 8,300–56,500 with polydispersity indexes (Mw/Mn) between 1.19 and 1.28. The lower critical solution temperature (LCST) of the copolymers increased with the mole fraction of MEO3MA in the copolymer over the range from 26 to 52 °C. The average hydrodynamic diameter, measured by dynamic light scattering, varied with temperature above the LCST. These two monomers were also block copolymerized by ATRP to form polymers with molecular weight of Mn = 30,000 and Mw/Mn from 1.12 to 1.21. The LCST of the block copolymers shifted toward the LCST of the major segment, as compared to the value measured for the statistical copolymers at the same composition. As temperature increased, micelles, consisting of aggregated PMEO2MA cores and PMEO3MA shell, were formed. The micelles aggregated upon further heating to precipitate as larger particles. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 194–202, 2008  相似文献   
160.
Novel star‐like hyperbranched polymers with amphiphilic arms were synthesized via three steps. Hyperbranched poly(amido amine)s containing secondary amine and hydroxyl groups were successfully synthesized via Michael addition polymerization of triacrylamide (TT) and 3‐amino‐1,2‐propanediol (APD) with feed molar ratio of 1:2. 1H, 13C, and HSQC NMR techniques were used to clarify polymerization mechanism and the structures of the resultant hyperbranched polymers. Methoxyl poly(ethylene oxide) acrylate (A‐MPEO) and carboxylic acid‐terminated poly(ε‐caprolactone) (PCL) were sequentially reacted with secondary amine and hydroxyl group, and the core–shell structures with poly(1TT‐2APD) as core and two distinguishing polymer chains, PEO and PCL, as shell were constructed. The star‐like hyperbranched polymers have different sizes in dimethyl sulfonate, chloroform, and deionized water, which were characterized by DLS and 1H NMR. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1388–1401, 2008  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号